Chaste  Release::2017.1
AbstractContinuumMechanicsAssembler.hpp
1 /*
2 
3 Copyright (c) 2005-2017, University of Oxford.
4 All rights reserved.
5 
6 University of Oxford means the Chancellor, Masters and Scholars of the
7 University of Oxford, having an administrative office at Wellington
8 Square, Oxford OX1 2JD, UK.
9 
10 This file is part of Chaste.
11 
12 Redistribution and use in source and binary forms, with or without
13 modification, are permitted provided that the following conditions are met:
14  * Redistributions of source code must retain the above copyright notice,
15  this list of conditions and the following disclaimer.
16  * Redistributions in binary form must reproduce the above copyright notice,
17  this list of conditions and the following disclaimer in the documentation
18  and/or other materials provided with the distribution.
19  * Neither the name of the University of Oxford nor the names of its
20  contributors may be used to endorse or promote products derived from this
21  software without specific prior written permission.
22 
23 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
27 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
29 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 
34 */
35 
36 #ifndef ABSTRACTCONTINUUMMECHANICSASSEMBLER_HPP_
37 #define ABSTRACTCONTINUUMMECHANICSASSEMBLER_HPP_
38 
39 #include "AbstractFeAssemblerInterface.hpp"
40 #include "AbstractTetrahedralMesh.hpp"
41 #include "QuadraticMesh.hpp"
42 #include "DistributedQuadraticMesh.hpp"
43 #include "LinearBasisFunction.hpp"
44 #include "QuadraticBasisFunction.hpp"
45 #include "ReplicatableVector.hpp"
46 #include "DistributedVector.hpp"
47 #include "PetscTools.hpp"
48 #include "PetscVecTools.hpp"
49 #include "PetscMatTools.hpp"
50 #include "GaussianQuadratureRule.hpp"
51 
52 
86 template<unsigned DIM, bool CAN_ASSEMBLE_VECTOR, bool CAN_ASSEMBLE_MATRIX>
87 class AbstractContinuumMechanicsAssembler : public AbstractFeAssemblerInterface<CAN_ASSEMBLE_VECTOR,CAN_ASSEMBLE_MATRIX>
88 {
89 protected:
93  static const bool BLOCK_SYMMETRIC_MATRIX = true; //generalise to non-block symmetric matrices later (when needed maybe)
94 
96  static const unsigned NUM_VERTICES_PER_ELEMENT = DIM+1;
97 
99  static const unsigned NUM_NODES_PER_ELEMENT = (DIM+1)*(DIM+2)/2; // assuming quadratic
100 
105 
107  static const unsigned STENCIL_SIZE = DIM*NUM_NODES_PER_ELEMENT + NUM_VERTICES_PER_ELEMENT;
108 
111 
114 
121  void DoAssemble();
122 
123 
143  virtual c_matrix<double,SPATIAL_BLOCK_SIZE_ELEMENTAL,SPATIAL_BLOCK_SIZE_ELEMENTAL> ComputeSpatialSpatialMatrixTerm(
144  c_vector<double, NUM_NODES_PER_ELEMENT>& rQuadPhi,
145  c_matrix<double, DIM, NUM_NODES_PER_ELEMENT>& rGradQuadPhi,
146  c_vector<double,DIM>& rX,
147  Element<DIM,DIM>* pElement)
148  {
150  }
151 
174  virtual c_matrix<double,SPATIAL_BLOCK_SIZE_ELEMENTAL,PRESSURE_BLOCK_SIZE_ELEMENTAL> ComputeSpatialPressureMatrixTerm(
175  c_vector<double, NUM_NODES_PER_ELEMENT>& rQuadPhi,
176  c_matrix<double, DIM, NUM_NODES_PER_ELEMENT>& rGradQuadPhi,
177  c_vector<double, NUM_VERTICES_PER_ELEMENT>& rLinearPhi,
178  c_matrix<double, DIM, NUM_VERTICES_PER_ELEMENT>& rGradLinearPhi,
179  c_vector<double,DIM>& rX,
180  Element<DIM,DIM>* pElement)
181  {
183  }
184 
185 
205  virtual c_matrix<double,PRESSURE_BLOCK_SIZE_ELEMENTAL,PRESSURE_BLOCK_SIZE_ELEMENTAL> ComputePressurePressureMatrixTerm(
206  c_vector<double, NUM_VERTICES_PER_ELEMENT>& rLinearPhi,
207  c_matrix<double, DIM, NUM_VERTICES_PER_ELEMENT>& rGradLinearPhi,
208  c_vector<double,DIM>& rX,
209  Element<DIM,DIM>* pElement)
210  {
212  }
213 
214 
237  virtual c_vector<double,SPATIAL_BLOCK_SIZE_ELEMENTAL> ComputeSpatialVectorTerm(
238  c_vector<double, NUM_NODES_PER_ELEMENT>& rQuadPhi,
239  c_matrix<double, DIM, NUM_NODES_PER_ELEMENT>& rGradQuadPhi,
240  c_vector<double,DIM>& rX,
241  Element<DIM,DIM>* pElement) = 0;
242 
243 
266  virtual c_vector<double,PRESSURE_BLOCK_SIZE_ELEMENTAL> ComputePressureVectorTerm(
267  c_vector<double, NUM_VERTICES_PER_ELEMENT>& rLinearPhi,
268  c_matrix<double, DIM, NUM_VERTICES_PER_ELEMENT>& rGradLinearPhi,
269  c_vector<double,DIM>& rX,
270  Element<DIM,DIM>* pElement)
271  {
272  return zero_vector<double>(PRESSURE_BLOCK_SIZE_ELEMENTAL);
273  }
274 
286  void AssembleOnElement(Element<DIM, DIM>& rElement,
287  c_matrix<double, STENCIL_SIZE, STENCIL_SIZE >& rAElem,
288  c_vector<double, STENCIL_SIZE>& rBElem);
289 
290 public:
295  : AbstractFeAssemblerInterface<CAN_ASSEMBLE_VECTOR,CAN_ASSEMBLE_MATRIX>(),
296  mpMesh(pMesh)
297  {
298  assert(pMesh);
299 
300  // Check that the mesh is quadratic
301  QuadraticMesh<DIM>* p_quad_mesh = dynamic_cast<QuadraticMesh<DIM>* >(pMesh);
302  DistributedQuadraticMesh<DIM>* p_distributed_quad_mesh = dynamic_cast<DistributedQuadraticMesh<DIM>* >(pMesh);
303 
304  if ((p_quad_mesh == NULL) && (p_distributed_quad_mesh == NULL))
305  {
306  EXCEPTION("Continuum mechanics assemblers require a quadratic mesh");
307  }
308 
309  // In general the Jacobian for a mechanics problem is non-polynomial.
310  // We therefore use the highest order integration rule available
311  mpQuadRule = new GaussianQuadratureRule<DIM>(3);
312  }
313 
314 // void SetCurrentSolution(Vec currentSolution);
315 
320  {
321  delete mpQuadRule;
322  }
323 };
324 
325 
327 //template<unsigned DIM, bool CAN_ASSEMBLE_VECTOR, bool CAN_ASSEMBLE_MATRIX>
328 //void AbstractContinuumMechanicsAssembler<DIM,CAN_ASSEMBLE_VECTOR,CAN_ASSEMBLE_MATRIX>::SetCurrentSolution(Vec currentSolution)
329 //{
330 // assert(currentSolution != NULL);
331 //
332 // // Replicate the current solution and store so can be used in AssembleOnElement
333 // HeartEventHandler::BeginEvent(HeartEventHandler::COMMUNICATION);
334 // mCurrentSolutionOrGuessReplicated.ReplicatePetscVector(currentSolution);
335 // HeartEventHandler::EndEvent(HeartEventHandler::COMMUNICATION);
336 //
337 // // The AssembleOnElement type methods will determine if a current solution or
338 // // current guess exists by looking at the size of the replicated vector, so
339 // // check the size is zero if there isn't a current solution.
340 // assert(mCurrentSolutionOrGuessReplicated.GetSize() > 0);
341 //}
342 
343 template<unsigned DIM, bool CAN_ASSEMBLE_VECTOR, bool CAN_ASSEMBLE_MATRIX>
345 {
346  assert(this->mAssembleMatrix || this->mAssembleVector);
347  if (this->mAssembleMatrix)
348  {
349  if (this->mMatrixToAssemble == NULL)
350  {
351  EXCEPTION("Matrix to be assembled has not been set");
352  }
354  {
355  EXCEPTION("Matrix provided to be assembled has size " << PetscMatTools::GetSize(this->mMatrixToAssemble) << ", not expected size of " << (DIM+1)*mpMesh->GetNumNodes() << " ((dim+1)*num_nodes)");
356  }
357  }
358 
359  if (this->mAssembleVector)
360  {
361  if (this->mVectorToAssemble == NULL)
362  {
363  EXCEPTION("Vector to be assembled has not been set");
364  }
366  {
367  EXCEPTION("Vector provided to be assembled has size " << PetscVecTools::GetSize(this->mVectorToAssemble) << ", not expected size of " << (DIM+1)*mpMesh->GetNumNodes() << " ((dim+1)*num_nodes)");
368  }
369  }
370 
371  // Zero the matrix/vector if it is to be assembled
372  if (this->mAssembleVector && this->mZeroVectorBeforeAssembly)
373  {
374  // Note PetscVecTools::Finalise(this->mVectorToAssemble); on an unused matrix
375  // would "compress" data and make any pre-allocated entries redundant.
377  }
378  if (this->mAssembleMatrix && this->mZeroMatrixBeforeAssembly)
379  {
380  // Note PetscMatTools::Finalise(this->mMatrixToAssemble); on an unused matrix
381  // would "compress" data and make any pre-allocated entries redundant.
383  }
384 
385  c_matrix<double, STENCIL_SIZE, STENCIL_SIZE> a_elem = zero_matrix<double>(STENCIL_SIZE,STENCIL_SIZE);
386  c_vector<double, STENCIL_SIZE> b_elem = zero_vector<double>(STENCIL_SIZE);
387 
388 
389  // Loop over elements
391  iter != mpMesh->GetElementIteratorEnd();
392  ++iter)
393  {
394  Element<DIM, DIM>& r_element = *iter;
395 
396  // Test for ownership first, since it's pointless to test the criterion on something which we might know nothing about.
397  if (r_element.GetOwnership() == true /*&& ElementAssemblyCriterion(r_element)==true*/)
398  {
399  // LCOV_EXCL_START
400  // note: if assemble matrix only
401  if (CommandLineArguments::Instance()->OptionExists("-mech_very_verbose") && this->mAssembleMatrix)
402  {
403  std::cout << "\r[" << PetscTools::GetMyRank() << "]: Element " << r_element.GetIndex() << " of " << mpMesh->GetNumElements() << std::flush;
404  }
405  // LCOV_EXCL_STOP
406 
407  AssembleOnElement(r_element, a_elem, b_elem);
408 
409  // Note that a different ordering is used for the elemental matrix compared to the global matrix.
410  // See comments about ordering above.
411  unsigned p_indices[STENCIL_SIZE];
412  // Work out the mapping for spatial terms
413  for (unsigned i=0; i<NUM_NODES_PER_ELEMENT; i++)
414  {
415  for (unsigned j=0; j<DIM; j++)
416  {
417  // DIM+1 on the right-hand side here is the problem dimension
418  p_indices[DIM*i+j] = (DIM+1)*r_element.GetNodeGlobalIndex(i) + j;
419  }
420  }
421  // Work out the mapping for pressure terms
422  for (unsigned i=0; i<NUM_VERTICES_PER_ELEMENT; i++)
423  {
424  p_indices[DIM*NUM_NODES_PER_ELEMENT + i] = (DIM+1)*r_element.GetNodeGlobalIndex(i)+DIM;
425  }
426 
427 
428  if (this->mAssembleMatrix)
429  {
430  PetscMatTools::AddMultipleValues<STENCIL_SIZE>(this->mMatrixToAssemble, p_indices, a_elem);
431  }
432 
433  if (this->mAssembleVector)
434  {
435  PetscVecTools::AddMultipleValues<STENCIL_SIZE>(this->mVectorToAssemble, p_indices, b_elem);
436  }
437  }
438  }
439 }
440 
441 template<unsigned DIM, bool CAN_ASSEMBLE_VECTOR, bool CAN_ASSEMBLE_MATRIX>
443  c_matrix<double, STENCIL_SIZE, STENCIL_SIZE >& rAElem,
444  c_vector<double, STENCIL_SIZE>& rBElem)
445 {
446  static c_matrix<double,DIM,DIM> jacobian;
447  static c_matrix<double,DIM,DIM> inverse_jacobian;
448  double jacobian_determinant;
449 
450  mpMesh->GetInverseJacobianForElement(rElement.GetIndex(), jacobian, jacobian_determinant, inverse_jacobian);
451 
452  if (this->mAssembleMatrix)
453  {
454  rAElem.clear();
455  }
456 
457  if (this->mAssembleVector)
458  {
459  rBElem.clear();
460  }
461 
462  // Allocate memory for the basis functions values and derivative values
463  static c_vector<double, NUM_VERTICES_PER_ELEMENT> linear_phi;
464  static c_vector<double, NUM_NODES_PER_ELEMENT> quad_phi;
465  static c_matrix<double, DIM, NUM_NODES_PER_ELEMENT> grad_quad_phi;
466  static c_matrix<double, DIM, NUM_VERTICES_PER_ELEMENT> grad_linear_phi;
467 
468  c_vector<double,DIM> body_force;
469 
470  // Loop over Gauss points
471  for (unsigned quadrature_index=0; quadrature_index < mpQuadRule->GetNumQuadPoints(); quadrature_index++)
472  {
473  double wJ = jacobian_determinant * mpQuadRule->GetWeight(quadrature_index);
474  const ChastePoint<DIM>& quadrature_point = mpQuadRule->rGetQuadPoint(quadrature_index);
475 
476  // Set up basis function info
477  LinearBasisFunction<DIM>::ComputeBasisFunctions(quadrature_point, linear_phi);
478  QuadraticBasisFunction<DIM>::ComputeBasisFunctions(quadrature_point, quad_phi);
479  QuadraticBasisFunction<DIM>::ComputeTransformedBasisFunctionDerivatives(quadrature_point, inverse_jacobian, grad_quad_phi);
480  LinearBasisFunction<DIM>::ComputeTransformedBasisFunctionDerivatives(quadrature_point, inverse_jacobian, grad_linear_phi);
481 
482  // interpolate X (ie physical location of this quad point).
483  c_vector<double,DIM> X = zero_vector<double>(DIM);
484  for (unsigned vertex_index=0; vertex_index<NUM_VERTICES_PER_ELEMENT; vertex_index++)
485  {
486  for (unsigned j=0; j<DIM; j++)
487  {
488  X(j) += linear_phi(vertex_index)*rElement.GetNode(vertex_index)->rGetLocation()(j);
489  }
490  }
491 
492  if (this->mAssembleVector)
493  {
494  c_vector<double,SPATIAL_BLOCK_SIZE_ELEMENTAL> b_spatial
495  = ComputeSpatialVectorTerm(quad_phi, grad_quad_phi, X, &rElement);
496  c_vector<double,PRESSURE_BLOCK_SIZE_ELEMENTAL> b_pressure = ComputePressureVectorTerm(linear_phi, grad_linear_phi, X, &rElement);
497 
498  for (unsigned i=0; i<SPATIAL_BLOCK_SIZE_ELEMENTAL; i++)
499  {
500  rBElem(i) += b_spatial(i)*wJ;
501  }
502 
503  for (unsigned i=0; i<PRESSURE_BLOCK_SIZE_ELEMENTAL; i++)
504  {
505  rBElem(SPATIAL_BLOCK_SIZE_ELEMENTAL + i) += b_pressure(i)*wJ;
506  }
507  }
508 
509  if (this->mAssembleMatrix)
510  {
511  c_matrix<double,SPATIAL_BLOCK_SIZE_ELEMENTAL,SPATIAL_BLOCK_SIZE_ELEMENTAL> a_spatial_spatial
512  = ComputeSpatialSpatialMatrixTerm(quad_phi, grad_quad_phi, X, &rElement);
513 
514  c_matrix<double,SPATIAL_BLOCK_SIZE_ELEMENTAL,PRESSURE_BLOCK_SIZE_ELEMENTAL> a_spatial_pressure
515  = ComputeSpatialPressureMatrixTerm(quad_phi, grad_quad_phi, linear_phi, grad_linear_phi, X, &rElement);
516 
517  c_matrix<double,PRESSURE_BLOCK_SIZE_ELEMENTAL,SPATIAL_BLOCK_SIZE_ELEMENTAL> a_pressure_spatial;
518  if (!BLOCK_SYMMETRIC_MATRIX)
519  {
520  NEVER_REACHED; // to-come: non-mixed problems
521  //a_pressure_spatial = ComputeSpatialPressureMatrixTerm(quad_phi, grad_quad_phi, lin_phi, grad_lin_phi, x, &rElement);
522  }
523 
524  c_matrix<double,PRESSURE_BLOCK_SIZE_ELEMENTAL,PRESSURE_BLOCK_SIZE_ELEMENTAL> a_pressure_pressure
525  = ComputePressurePressureMatrixTerm(linear_phi, grad_linear_phi, X, &rElement);
526 
527  for (unsigned i=0; i<SPATIAL_BLOCK_SIZE_ELEMENTAL; i++)
528  {
529  for (unsigned j=0; j<SPATIAL_BLOCK_SIZE_ELEMENTAL; j++)
530  {
531  rAElem(i,j) += a_spatial_spatial(i,j)*wJ;
532  }
533 
534  for (unsigned j=0; j<PRESSURE_BLOCK_SIZE_ELEMENTAL; j++)
535  {
536  rAElem(i, SPATIAL_BLOCK_SIZE_ELEMENTAL + j) += a_spatial_pressure(i,j)*wJ;
537  }
538  }
539 
540  for (unsigned i=0; i<PRESSURE_BLOCK_SIZE_ELEMENTAL; i++)
541  {
542  if (BLOCK_SYMMETRIC_MATRIX)
543  {
544  for (unsigned j=0; j<SPATIAL_BLOCK_SIZE_ELEMENTAL; j++)
545  {
546  rAElem(SPATIAL_BLOCK_SIZE_ELEMENTAL + i, j) += a_spatial_pressure(j,i)*wJ;
547  }
548  }
549  else
550  {
551  NEVER_REACHED; // to-come: non-mixed problems
552  }
553 
554  for (unsigned j=0; j<PRESSURE_BLOCK_SIZE_ELEMENTAL; j++)
555  {
556  rAElem(SPATIAL_BLOCK_SIZE_ELEMENTAL + i, SPATIAL_BLOCK_SIZE_ELEMENTAL + j) += a_pressure_pressure(i,j)*wJ;
557  }
558  }
559  }
560  }
561 }
562 
563 #endif // ABSTRACTCONTINUUMMECHANICSASSEMBLER_HPP_
ElementIterator GetElementIteratorBegin(bool skipDeletedElements=true)
virtual c_matrix< double, SPATIAL_BLOCK_SIZE_ELEMENTAL, SPATIAL_BLOCK_SIZE_ELEMENTAL > ComputeSpatialSpatialMatrixTerm(c_vector< double, NUM_NODES_PER_ELEMENT > &rQuadPhi, c_matrix< double, DIM, NUM_NODES_PER_ELEMENT > &rGradQuadPhi, c_vector< double, DIM > &rX, Element< DIM, DIM > *pElement)
static unsigned GetSize(Vec vector)
virtual c_vector< double, SPATIAL_BLOCK_SIZE_ELEMENTAL > ComputeSpatialVectorTerm(c_vector< double, NUM_NODES_PER_ELEMENT > &rQuadPhi, c_matrix< double, DIM, NUM_NODES_PER_ELEMENT > &rGradQuadPhi, c_vector< double, DIM > &rX, Element< DIM, DIM > *pElement)=0
unsigned GetNodeGlobalIndex(unsigned localIndex) const
virtual unsigned GetNumElements() const
#define EXCEPTION(message)
Definition: Exception.hpp:143
static void ComputeTransformedBasisFunctionDerivatives(const ChastePoint< ELEMENT_DIM > &rPoint, const c_matrix< double, ELEMENT_DIM, ELEMENT_DIM > &rInverseJacobian, c_matrix< double, ELEMENT_DIM,(ELEMENT_DIM+1)*(ELEMENT_DIM+2)/2 > &rReturnValue)
AbstractContinuumMechanicsAssembler(AbstractTetrahedralMesh< DIM, DIM > *pMesh)
virtual unsigned GetNumNodes() const
#define NEVER_REACHED
Definition: Exception.hpp:206
unsigned GetNumQuadPoints() const
virtual void GetInverseJacobianForElement(unsigned elementIndex, c_matrix< double, SPACE_DIM, ELEMENT_DIM > &rJacobian, double &rJacobianDeterminant, c_matrix< double, ELEMENT_DIM, SPACE_DIM > &rInverseJacobian) const
bool OptionExists(const std::string &rOption)
Node< SPACE_DIM > * GetNode(unsigned localIndex) const
static void ComputeTransformedBasisFunctionDerivatives(const ChastePoint< ELEMENT_DIM > &rPoint, const c_matrix< double, ELEMENT_DIM, ELEMENT_DIM > &rInverseJacobian, c_matrix< double, ELEMENT_DIM, ELEMENT_DIM+1 > &rReturnValue)
bool GetOwnership() const
static void Zero(Mat matrix)
static void ComputeBasisFunctions(const ChastePoint< ELEMENT_DIM > &rPoint, c_vector< double,(ELEMENT_DIM+1)*(ELEMENT_DIM+2)/2 > &rReturnValue)
virtual c_matrix< double, PRESSURE_BLOCK_SIZE_ELEMENTAL, PRESSURE_BLOCK_SIZE_ELEMENTAL > ComputePressurePressureMatrixTerm(c_vector< double, NUM_VERTICES_PER_ELEMENT > &rLinearPhi, c_matrix< double, DIM, NUM_VERTICES_PER_ELEMENT > &rGradLinearPhi, c_vector< double, DIM > &rX, Element< DIM, DIM > *pElement)
static void ComputeBasisFunctions(const ChastePoint< ELEMENT_DIM > &rPoint, c_vector< double, ELEMENT_DIM+1 > &rReturnValue)
virtual c_vector< double, PRESSURE_BLOCK_SIZE_ELEMENTAL > ComputePressureVectorTerm(c_vector< double, NUM_VERTICES_PER_ELEMENT > &rLinearPhi, c_matrix< double, DIM, NUM_VERTICES_PER_ELEMENT > &rGradLinearPhi, c_vector< double, DIM > &rX, Element< DIM, DIM > *pElement)
virtual c_matrix< double, SPATIAL_BLOCK_SIZE_ELEMENTAL, PRESSURE_BLOCK_SIZE_ELEMENTAL > ComputeSpatialPressureMatrixTerm(c_vector< double, NUM_NODES_PER_ELEMENT > &rQuadPhi, c_matrix< double, DIM, NUM_NODES_PER_ELEMENT > &rGradQuadPhi, c_vector< double, NUM_VERTICES_PER_ELEMENT > &rLinearPhi, c_matrix< double, DIM, NUM_VERTICES_PER_ELEMENT > &rGradLinearPhi, c_vector< double, DIM > &rX, Element< DIM, DIM > *pElement)
static void Zero(Vec vector)
unsigned GetIndex() const
double GetWeight(unsigned index) const
static CommandLineArguments * Instance()
void AssembleOnElement(Element< DIM, DIM > &rElement, c_matrix< double, STENCIL_SIZE, STENCIL_SIZE > &rAElem, c_vector< double, STENCIL_SIZE > &rBElem)
static unsigned GetMyRank()
Definition: PetscTools.cpp:114
const ChastePoint< ELEMENT_DIM > & rGetQuadPoint(unsigned index) const
static unsigned GetSize(Mat matrix)