Chaste Release::3.1
IncompressibleNonlinearElasticitySolver< DIM > Class Template Reference

#include <IncompressibleNonlinearElasticitySolver.hpp>

Inheritance diagram for IncompressibleNonlinearElasticitySolver< DIM >:
Collaboration diagram for IncompressibleNonlinearElasticitySolver< DIM >:

List of all members.

Public Member Functions

 IncompressibleNonlinearElasticitySolver (QuadraticMesh< DIM > &rQuadMesh, SolidMechanicsProblemDefinition< DIM > &rProblemDefinition, std::string outputDirectory)
 ~IncompressibleNonlinearElasticitySolver ()

Protected Member Functions

virtual void AssembleOnElement (Element< DIM, DIM > &rElement, c_matrix< double, STENCIL_SIZE, STENCIL_SIZE > &rAElem, c_matrix< double, STENCIL_SIZE, STENCIL_SIZE > &rAElemPrecond, c_vector< double, STENCIL_SIZE > &rBElem, bool assembleResidual, bool assembleJacobian)
void FormInitialGuess ()
void AssembleSystem (bool assembleResidual, bool assembleJacobian)

Static Protected Attributes

static const size_t NUM_NODES_PER_ELEMENT = AbstractNonlinearElasticitySolver<DIM>::NUM_NODES_PER_ELEMENT
static const size_t NUM_VERTICES_PER_ELEMENT = AbstractNonlinearElasticitySolver<DIM>::NUM_VERTICES_PER_ELEMENT
static const size_t NUM_NODES_PER_BOUNDARY_ELEMENT = AbstractNonlinearElasticitySolver<DIM>::NUM_NODES_PER_BOUNDARY_ELEMENT
static const size_t STENCIL_SIZE = DIM*NUM_NODES_PER_ELEMENT + NUM_VERTICES_PER_ELEMENT
static const size_t BOUNDARY_STENCIL_SIZE = DIM*NUM_NODES_PER_BOUNDARY_ELEMENT

Friends

class TestIncompressibleNonlinearElasticitySolver
class TestCompressibleNonlinearElasticitySolver
class TestNonlinearElasticityAdjointSolver
class AdaptiveNonlinearElasticityProblem

Detailed Description

template<size_t DIM>
class IncompressibleNonlinearElasticitySolver< DIM >

Finite elasticity solver. Solves static *incompressible* nonlinear elasticity problems with arbitrary (incompressible) material laws and a body force.

Uses quadratic-linear bases (for displacement and pressure), and is therefore outside other assembler or solver hierarchy.

Definition at line 60 of file IncompressibleNonlinearElasticitySolver.hpp.


Constructor & Destructor Documentation

template<size_t DIM>
IncompressibleNonlinearElasticitySolver< DIM >::IncompressibleNonlinearElasticitySolver ( QuadraticMesh< DIM > &  rQuadMesh,
SolidMechanicsProblemDefinition< DIM > &  rProblemDefinition,
std::string  outputDirectory 
)

Constructor.

Parameters:
rQuadMeshThe quadratic mesh to solve on
rProblemDefinitionan object defining in particular the body force and boundary conditions
outputDirectoryThe output directory

Definition at line 606 of file IncompressibleNonlinearElasticitySolver.cpp.

References EXCEPTION, IncompressibleNonlinearElasticitySolver< DIM >::FormInitialGuess(), and SolidMechanicsProblemDefinition< DIM >::GetCompressibilityType().

Destructor.

Definition at line 155 of file IncompressibleNonlinearElasticitySolver.hpp.


Member Function Documentation

template<size_t DIM>
void IncompressibleNonlinearElasticitySolver< DIM >::AssembleOnElement ( Element< DIM, DIM > &  rElement,
c_matrix< double, STENCIL_SIZE, STENCIL_SIZE > &  rAElem,
c_matrix< double, STENCIL_SIZE, STENCIL_SIZE > &  rAElemPrecond,
c_vector< double, STENCIL_SIZE > &  rBElem,
bool  assembleResidual,
bool  assembleJacobian 
) [protected, virtual]

Assemble residual or Jacobian on an element, using the current solution stored in mCurrrentSolution. The ordering assumed is (in 2d) rBElem = [u0 v0 u1 v1 .. u5 v5 p0 p1 p2]. (This ordering in used at the element level, but not in the global matrix/vector).

Parameters:
rElementThe element to assemble on.
rAElemThe element's contribution to the LHS matrix is returned in this n by n matrix, where n is the no. of nodes in this element. There is no need to zero this matrix before calling.
rAElemPrecondThe element's contribution to the matrix passed to PetSC in creating a preconditioner
rBElemThe element's contribution to the RHS vector is returned in this vector of length n, the no. of nodes in this element. There is no need to zero this vector before calling.
assembleResidualA bool stating whether to assemble the residual vector.
assembleJacobianA bool stating whether to assemble the Jacobian matrix.

Definition at line 210 of file IncompressibleNonlinearElasticitySolver.cpp.

References QuadraticBasisFunction< ELEMENT_DIM >::ComputeBasisFunctions(), LinearBasisFunction< ELEMENT_DIM >::ComputeBasisFunctions(), AbstractMaterialLaw< DIM >::ComputeStressAndStressDerivative(), QuadraticBasisFunction< ELEMENT_DIM >::ComputeTransformedBasisFunctionDerivatives(), Determinant(), AbstractElement< ELEMENT_DIM, SPACE_DIM >::GetIndex(), AbstractElement< ELEMENT_DIM, SPACE_DIM >::GetNodeGlobalIndex(), Inverse(), NEVER_REACHED, and AbstractMaterialLaw< DIM >::SetChangeOfBasisMatrix().

template<size_t DIM>
void IncompressibleNonlinearElasticitySolver< DIM >::AssembleSystem ( bool  assembleResidual,
bool  assembleJacobian 
) [protected, virtual]

Assemble the residual vector (using the current solution stored in mCurrentSolution, output going to mpLinearSystem->rGetRhsVector), or Jacobian matrix (using the current solution stored in mCurrentSolution, output going to mpLinearSystem->rGetLhsMatrix).

Parameters:
assembleResidualA bool stating whether to assemble the residual vector.
assembleJacobianA bool stating whether to assemble the Jacobian matrix.

Implements AbstractNonlinearElasticitySolver< DIM >.

Definition at line 52 of file IncompressibleNonlinearElasticitySolver.cpp.

References PetscVecTools::Finalise(), AbstractTetrahedralMesh< ELEMENT_DIM, SPACE_DIM >::GetElementIteratorBegin(), PetscTools::GetMyRank(), AbstractElement< ELEMENT_DIM, SPACE_DIM >::GetNodeGlobalIndex(), AbstractElement< ELEMENT_DIM, SPACE_DIM >::GetOwnership(), CommandLineArguments::Instance(), CommandLineArguments::OptionExists(), PetscMatTools::SwitchWriteMode(), PetscMatTools::Zero(), and PetscVecTools::Zero().

template<size_t DIM>
void IncompressibleNonlinearElasticitySolver< DIM >::FormInitialGuess ( ) [protected]

Set up the current guess to be the solution given no displacement.

The initial guess is zero for spatial variables, 0 for dummy pressure variables, and the appropriate choice of pressure such that the initial stress is zero (depends on material law)

In a homogeneous problem, all (the non-dummy) pressures are the same. In a heterogeneous problem, p for a given vertex is the zero-strain-pressure for ONE of the elements containing that vertex (which element containing the vertex is reached LAST). In this case the initial guess will be close but not exactly the solution given zero body force.

Definition at line 580 of file IncompressibleNonlinearElasticitySolver.cpp.

Referenced by IncompressibleNonlinearElasticitySolver< DIM >::IncompressibleNonlinearElasticitySolver().


Member Data Documentation

template<size_t DIM>
const size_t IncompressibleNonlinearElasticitySolver< DIM >::BOUNDARY_STENCIL_SIZE = DIM*NUM_NODES_PER_BOUNDARY_ELEMENT [static, protected]

Boundary stencil size.

Reimplemented from AbstractNonlinearElasticitySolver< DIM >.

Definition at line 85 of file IncompressibleNonlinearElasticitySolver.hpp.

Number of nodes per boundary element.

Reimplemented from AbstractNonlinearElasticitySolver< DIM >.

Definition at line 76 of file IncompressibleNonlinearElasticitySolver.hpp.

Number of nodes per element.

Reimplemented from AbstractNonlinearElasticitySolver< DIM >.

Definition at line 70 of file IncompressibleNonlinearElasticitySolver.hpp.

Number of vertices per element.

Reimplemented from AbstractNonlinearElasticitySolver< DIM >.

Definition at line 73 of file IncompressibleNonlinearElasticitySolver.hpp.

template<size_t DIM>
const size_t IncompressibleNonlinearElasticitySolver< DIM >::STENCIL_SIZE = DIM*NUM_NODES_PER_ELEMENT + NUM_VERTICES_PER_ELEMENT [static, protected]

Stencil size - number of unknowns per element (DIM*NUM_NODES_PER_ELEMENT displacement unknowns, NUM_VERTICES_PER_ELEMENT pressure unknowns.

Definition at line 82 of file IncompressibleNonlinearElasticitySolver.hpp.


The documentation for this class was generated from the following files: