Chaste  Release::2017.1
GeneralisedLinearSpringForce.cpp
1 /*
2 
3 Copyright (c) 2005-2017, University of Oxford.
4 All rights reserved.
5 
6 University of Oxford means the Chancellor, Masters and Scholars of the
7 University of Oxford, having an administrative office at Wellington
8 Square, Oxford OX1 2JD, UK.
9 
10 This file is part of Chaste.
11 
12 Redistribution and use in source and binary forms, with or without
13 modification, are permitted provided that the following conditions are met:
14  * Redistributions of source code must retain the above copyright notice,
15  this list of conditions and the following disclaimer.
16  * Redistributions in binary form must reproduce the above copyright notice,
17  this list of conditions and the following disclaimer in the documentation
18  and/or other materials provided with the distribution.
19  * Neither the name of the University of Oxford nor the names of its
20  contributors may be used to endorse or promote products derived from this
21  software without specific prior written permission.
22 
23 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
27 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
29 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 
34 */
35 
36 #include "GeneralisedLinearSpringForce.hpp"
37 
38 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
40  : AbstractTwoBodyInteractionForce<ELEMENT_DIM,SPACE_DIM>(),
41  mMeinekeSpringStiffness(15.0), // denoted by mu in Meineke et al, 2001 (doi:10.1046/j.0960-7722.2001.00216.x)
42  mMeinekeDivisionRestingSpringLength(0.5),
43  mMeinekeSpringGrowthDuration(1.0)
44 {
45  if (SPACE_DIM == 1)
46  {
48  }
49 }
50 
51 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
53  unsigned nodeBGlobalIndex,
55  bool isCloserThanRestLength)
56 {
57  return 1.0;
58 }
59 
60 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
62 {
63 }
64 
65 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
66 c_vector<double, SPACE_DIM> GeneralisedLinearSpringForce<ELEMENT_DIM,SPACE_DIM>::CalculateForceBetweenNodes(unsigned nodeAGlobalIndex,
67  unsigned nodeBGlobalIndex,
69 {
70  // We should only ever calculate the force between two distinct nodes
71  assert(nodeAGlobalIndex != nodeBGlobalIndex);
72 
73  Node<SPACE_DIM>* p_node_a = rCellPopulation.GetNode(nodeAGlobalIndex);
74  Node<SPACE_DIM>* p_node_b = rCellPopulation.GetNode(nodeBGlobalIndex);
75 
76  // Get the node locations
77  const c_vector<double, SPACE_DIM>& r_node_a_location = p_node_a->rGetLocation();
78  const c_vector<double, SPACE_DIM>& r_node_b_location = p_node_b->rGetLocation();
79 
80  // Get the node radii for a NodeBasedCellPopulation
81  double node_a_radius = 0.0;
82  double node_b_radius = 0.0;
83 
84  if (bool(dynamic_cast<NodeBasedCellPopulation<SPACE_DIM>*>(&rCellPopulation)))
85  {
86  node_a_radius = p_node_a->GetRadius();
87  node_b_radius = p_node_b->GetRadius();
88  }
89 
90  // Get the unit vector parallel to the line joining the two nodes
91  c_vector<double, SPACE_DIM> unit_difference;
92  /*
93  * We use the mesh method GetVectorFromAtoB() to compute the direction of the
94  * unit vector along the line joining the two nodes, rather than simply subtract
95  * their positions, because this method can be overloaded (e.g. to enforce a
96  * periodic boundary in Cylindrical2dMesh).
97  */
98  unit_difference = rCellPopulation.rGetMesh().GetVectorFromAtoB(r_node_a_location, r_node_b_location);
99 
100  // Calculate the distance between the two nodes
101  double distance_between_nodes = norm_2(unit_difference);
102  assert(distance_between_nodes > 0);
103  assert(!std::isnan(distance_between_nodes));
104 
105  unit_difference /= distance_between_nodes;
106 
107  /*
108  * If mUseCutOffLength has been set, then there is zero force between
109  * two nodes located a distance apart greater than mMechanicsCutOffLength in AbstractTwoBodyInteractionForce.
110  */
111  if (this->mUseCutOffLength)
112  {
113  if (distance_between_nodes >= this->GetCutOffLength())
114  {
115  return zero_vector<double>(SPACE_DIM); // c_vector<double,SPACE_DIM>() is not guaranteed to be fresh memory
116  }
117  }
118 
119  /*
120  * Calculate the rest length of the spring connecting the two nodes with a default
121  * value of 1.0.
122  */
123  double rest_length_final = 1.0;
124 
125  if (bool(dynamic_cast<MeshBasedCellPopulation<ELEMENT_DIM,SPACE_DIM>*>(&rCellPopulation)))
126  {
127  rest_length_final = static_cast<MeshBasedCellPopulation<ELEMENT_DIM,SPACE_DIM>*>(&rCellPopulation)->GetRestLength(nodeAGlobalIndex, nodeBGlobalIndex);
128  }
129  else if (bool(dynamic_cast<NodeBasedCellPopulation<SPACE_DIM>*>(&rCellPopulation)))
130  {
131  assert(node_a_radius > 0 && node_b_radius > 0);
132  rest_length_final = node_a_radius+node_b_radius;
133  }
134 
135  double rest_length = rest_length_final;
136 
137  CellPtr p_cell_A = rCellPopulation.GetCellUsingLocationIndex(nodeAGlobalIndex);
138  CellPtr p_cell_B = rCellPopulation.GetCellUsingLocationIndex(nodeBGlobalIndex);
139 
140  double ageA = p_cell_A->GetAge();
141  double ageB = p_cell_B->GetAge();
142 
143  assert(!std::isnan(ageA));
144  assert(!std::isnan(ageB));
145 
146  /*
147  * If the cells are both newly divided, then the rest length of the spring
148  * connecting them grows linearly with time, until 1 hour after division.
149  */
151  {
153 
154  std::pair<CellPtr,CellPtr> cell_pair = p_static_cast_cell_population->CreateCellPair(p_cell_A, p_cell_B);
155 
156  if (p_static_cast_cell_population->IsMarkedSpring(cell_pair))
157  {
158  // Spring rest length increases from a small value to the normal rest length over 1 hour
159  double lambda = mMeinekeDivisionRestingSpringLength;
160  rest_length = lambda + (rest_length_final - lambda) * ageA/mMeinekeSpringGrowthDuration;
161  }
163  {
164  // This spring is about to go out of scope
165  p_static_cast_cell_population->UnmarkSpring(cell_pair);
166  }
167  }
168 
169  /*
170  * For apoptosis, progressively reduce the radius of the cell
171  */
172  double a_rest_length = rest_length*0.5;
173  double b_rest_length = a_rest_length;
174 
175  if (bool(dynamic_cast<NodeBasedCellPopulation<SPACE_DIM>*>(&rCellPopulation)))
176  {
177  assert(node_a_radius > 0 && node_b_radius > 0);
178  a_rest_length = (node_a_radius/(node_a_radius+node_b_radius))*rest_length;
179  b_rest_length = (node_b_radius/(node_a_radius+node_b_radius))*rest_length;
180  }
181 
182  /*
183  * If either of the cells has begun apoptosis, then the length of the spring
184  * connecting them decreases linearly with time.
185  */
186  if (p_cell_A->HasApoptosisBegun())
187  {
188  double time_until_death_a = p_cell_A->GetTimeUntilDeath();
189  a_rest_length = a_rest_length * time_until_death_a / p_cell_A->GetApoptosisTime();
190  }
191  if (p_cell_B->HasApoptosisBegun())
192  {
193  double time_until_death_b = p_cell_B->GetTimeUntilDeath();
194  b_rest_length = b_rest_length * time_until_death_b / p_cell_B->GetApoptosisTime();
195  }
196 
197  rest_length = a_rest_length + b_rest_length;
198  //assert(rest_length <= 1.0+1e-12); ///\todo #1884 Magic number: would "<= 1.0" do?
199 
200  // Although in this class the 'spring constant' is a constant parameter, in
201  // subclasses it can depend on properties of each of the cells
202  double overlap = distance_between_nodes - rest_length;
203  bool is_closer_than_rest_length = (overlap <= 0);
204  double multiplication_factor = VariableSpringConstantMultiplicationFactor(nodeAGlobalIndex, nodeBGlobalIndex, rCellPopulation, is_closer_than_rest_length);
205  double spring_stiffness = mMeinekeSpringStiffness;
206 
207  if (bool(dynamic_cast<MeshBasedCellPopulation<ELEMENT_DIM,SPACE_DIM>*>(&rCellPopulation)))
208  {
209  return multiplication_factor * spring_stiffness * unit_difference * overlap;
210  }
211  else
212  {
213  // A reasonably stable simple force law
214  if (is_closer_than_rest_length) //overlap is negative
215  {
216  //log(x+1) is undefined for x<=-1
217  assert(overlap > -rest_length_final);
218  c_vector<double, SPACE_DIM> temp = multiplication_factor*spring_stiffness * unit_difference * rest_length_final* log(1.0 + overlap/rest_length_final);
219  return temp;
220  }
221  else
222  {
223  double alpha = 5.0;
224  c_vector<double, SPACE_DIM> temp = multiplication_factor*spring_stiffness * unit_difference * overlap * exp(-alpha * overlap/rest_length_final);
225  return temp;
226  }
227  }
228 }
229 
230 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
232 {
234 }
235 
236 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
238 {
240 }
241 
242 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
244 {
246 }
247 
248 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
250 {
251  assert(springStiffness > 0.0);
252  mMeinekeSpringStiffness = springStiffness;
253 }
254 
255 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
257 {
258  assert(divisionRestingSpringLength <= 1.0);
259  assert(divisionRestingSpringLength >= 0.0);
260 
261  mMeinekeDivisionRestingSpringLength = divisionRestingSpringLength;
262 }
263 
264 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
266 {
267  assert(springGrowthDuration >= 0.0);
268 
269  mMeinekeSpringGrowthDuration = springGrowthDuration;
270 }
271 
272 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
274 {
275  *rParamsFile << "\t\t\t<MeinekeSpringStiffness>" << mMeinekeSpringStiffness << "</MeinekeSpringStiffness>\n";
276  *rParamsFile << "\t\t\t<MeinekeDivisionRestingSpringLength>" << mMeinekeDivisionRestingSpringLength << "</MeinekeDivisionRestingSpringLength>\n";
277  *rParamsFile << "\t\t\t<MeinekeSpringGrowthDuration>" << mMeinekeSpringGrowthDuration << "</MeinekeSpringGrowthDuration>\n";
278 
279  // Call method on direct parent class
281 }
282 
283 // Explicit instantiation
284 template class GeneralisedLinearSpringForce<1,1>;
285 template class GeneralisedLinearSpringForce<1,2>;
286 template class GeneralisedLinearSpringForce<2,2>;
287 template class GeneralisedLinearSpringForce<1,3>;
288 template class GeneralisedLinearSpringForce<2,3>;
289 template class GeneralisedLinearSpringForce<3,3>;
290 
291 // Serialization for Boost >= 1.36
virtual Node< SPACE_DIM > * GetNode(unsigned index)=0
virtual void OutputForceParameters(out_stream &rParamsFile)
void UnmarkSpring(std::pair< CellPtr, CellPtr > &rCellPair)
virtual CellPtr GetCellUsingLocationIndex(unsigned index)
Definition: Node.hpp:58
c_vector< double, SPACE_DIM > CalculateForceBetweenNodes(unsigned nodeAGlobalIndex, unsigned nodeBGlobalIndex, AbstractCellPopulation< ELEMENT_DIM, SPACE_DIM > &rCellPopulation)
static SimulationTime * Instance()
double GetTimeStep() const
std::pair< CellPtr, CellPtr > CreateCellPair(CellPtr pCell1, CellPtr pCell2)
#define EXPORT_TEMPLATE_CLASS_ALL_DIMS(CLASS)
void SetMeinekeDivisionRestingSpringLength(double divisionRestingSpringLength)
bool IsMarkedSpring(const std::pair< CellPtr, CellPtr > &rCellPair)
void SetMeinekeSpringGrowthDuration(double springGrowthDuration)
const c_vector< double, SPACE_DIM > & rGetLocation() const
Definition: Node.cpp:139
virtual double VariableSpringConstantMultiplicationFactor(unsigned nodeAGlobalIndex, unsigned nodeBGlobalIndex, AbstractCellPopulation< ELEMENT_DIM, SPACE_DIM > &rCellPopulation, bool isCloserThanRestLength)
AbstractMesh< ELEMENT_DIM, SPACE_DIM > & rGetMesh()
virtual void OutputForceParameters(out_stream &rParamsFile)
void SetMeinekeSpringStiffness(double springStiffness)
double GetRadius()
Definition: Node.cpp:248