Chaste  Release::2017.1
ElectroMechanicsProblemDefinition.cpp
1 /*
2 
3 Copyright (c) 2005-2017, University of Oxford.
4 All rights reserved.
5 
6 University of Oxford means the Chancellor, Masters and Scholars of the
7 University of Oxford, having an administrative office at Wellington
8 Square, Oxford OX1 2JD, UK.
9 
10 This file is part of Chaste.
11 
12 Redistribution and use in source and binary forms, with or without
13 modification, are permitted provided that the following conditions are met:
14  * Redistributions of source code must retain the above copyright notice,
15  this list of conditions and the following disclaimer.
16  * Redistributions in binary form must reproduce the above copyright notice,
17  this list of conditions and the following disclaimer in the documentation
18  and/or other materials provided with the distribution.
19  * Neither the name of the University of Oxford nor the names of its
20  contributors may be used to endorse or promote products derived from this
21  software without specific prior written permission.
22 
23 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
27 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
29 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 
34 */
35 
36 #include "ElectroMechanicsProblemDefinition.hpp"
37 #include "LabelBasedContractionCellFactory.hpp"
38 
39 template<unsigned DIM>
41  : SolidMechanicsProblemDefinition<DIM>(rMesh),
42  mContractionModelOdeTimeStep(-1.0),
43  mMechanicsSolveTimestep(-1.0),
44  mDeformationAffectsConductivity(false),
45  mDeformationAffectsCellModels(false),
46  mpDefaultMaterialLaw(NULL),
47  mReadFibreSheetInformationFromFile(false),
48  mNumIncrementsForInitialDeformation(1),
49  mApplyCrossFibreTension(false),
50  mSheetTensionFraction(DOUBLE_UNSET),
51  mSheetNormalTensionFraction(DOUBLE_UNSET),
52  mpContractionCellFactory(NULL),
53  mWeMadeCellFactory(false),
54  mSolverType(IMPLICIT) // default solver is implicit
55 {
56 }
57 
58 template<unsigned DIM>
60 {
62  {
63  delete mpDefaultMaterialLaw;
64  }
65 
67  {
69  }
70 }
71 
72 template<unsigned DIM>
73 void ElectroMechanicsProblemDefinition<DIM>::SetContractionModel(ContractionModelName contractionModel, double timestep)
74 {
75  assert(timestep > 0.0);
77 
78  if (contractionModel == NASH2004 || contractionModel == CONSTANT)
79  {
80  // These models can use an Explicit solver, default is Implicit.
81  SetSolverType(EXPLICIT);
82  }
83 
84  // Make sure we aren't overwriting a problem that has been set up with a cell factory.
85  assert(mpContractionCellFactory==NULL);
86 
88  mWeMadeCellFactory = true;
89  SetContractionCellFactory(p_factory);
90 }
91 
92 template<unsigned DIM>
94 {
96  {
97  delete mpDefaultMaterialLaw;
98  }
99 
100  if (compressibilityType == INCOMPRESSIBLE)
101  {
103  this->SetMaterialLaw(INCOMPRESSIBLE, mpDefaultMaterialLaw);
104  }
105  else
106  {
108  this->SetMaterialLaw(COMPRESSIBLE, mpDefaultMaterialLaw);
109  }
110 }
111 
112 template<unsigned DIM>
113 void ElectroMechanicsProblemDefinition<DIM>::SetDeformationAffectsElectrophysiology(bool deformationAffectsConductivity, bool deformationAffectsCellModels)
114 {
115  mDeformationAffectsConductivity = deformationAffectsConductivity;
116  mDeformationAffectsCellModels = deformationAffectsCellModels;
117 }
118 
119 template<unsigned DIM>
121 {
122  assert(timestep > 0.0);
123  mMechanicsSolveTimestep = timestep;
124 }
125 
126 template<unsigned DIM>
127 void ElectroMechanicsProblemDefinition<DIM>::SetVariableFibreSheetDirectionsFile(const FileFinder& rFibreSheetDirectionsFile, bool definedPerQuadraturePoint)
128 {
130  mFibreSheetDirectionsFile = rFibreSheetDirectionsFile;
131  mFibreSheetDirectionsDefinedPerQuadraturePoint = definedPerQuadraturePoint;
132 }
133 
134 template<unsigned DIM>
135 void ElectroMechanicsProblemDefinition<DIM>::SetApplyIsotropicCrossFibreTension(bool applyCrossFibreTension, double crossFibreTensionFraction)
136 {
137  mApplyCrossFibreTension = applyCrossFibreTension;
138  mSheetTensionFraction = crossFibreTensionFraction;
139  mSheetNormalTensionFraction = crossFibreTensionFraction;
140 }
141 
142 template<unsigned DIM>
143 void ElectroMechanicsProblemDefinition<DIM>::SetApplyAnisotropicCrossFibreTension(bool applyCrossFibreTension, double sheetTensionFraction, double sheetNormalTensionFraction)
144 {
145  if (DIM!=3)
146  {
147  EXCEPTION("You can only apply anisotropic cross fibre tensions in a 3D simulation.");
148  }
149  mApplyCrossFibreTension = applyCrossFibreTension;
150  mSheetTensionFraction = sheetTensionFraction;
151  mSheetNormalTensionFraction = sheetNormalTensionFraction;
152 }
153 
154 template<unsigned DIM>
156 {
157  // Make sure we aren't overwriting a problem that has been set up with a cell factory already.
158  assert(mpContractionCellFactory == NULL);
159 
160  mpContractionCellFactory = pCellFactory;
161  mpContractionCellFactory->SetMechanicsMesh(static_cast<QuadraticMesh<DIM>*>(&(this->mrMesh)));
162 }
163 
164 template<unsigned DIM>
166 {
168 
169  if (mMechanicsSolveTimestep < 0.0)
170  {
171  EXCEPTION("Timestep for mechanics solve hasn't been set yet");
172  }
173 
175  {
176  std::string message = "Contraction model or contraction model ODE timestep have not been set. "
177  "Make sure SetContractionModel(), or SetContractionCellFactory() AND SetContractionModelOdeTimestep "
178  "are called. (Pass in a timestep even if contraction model is algebraic and won't use it). ";
179  EXCEPTION(message);
180  }
181 
182  if (mDeformationAffectsConductivity && this->GetCompressibilityType()==COMPRESSIBLE)
183  {
184  // the conductivity depends on the deformation gradient and also scales in some way with
185  // J=det(F), which is not equal to 1 in the compressible case. The F dependence
186  // is implemented but the J dependence is not yet.
187  EXCEPTION("Deformation affecting the conductivity is currently not implemented fully for compressible problems");
188  }
189 
191  {
192  // This combination is not allowed. For explanation see doxygen for SetDeformationAffectsElectrophysiology()
193  std::stringstream message;
194  message << "Deformation affecting cell models cannot be done when fibres-sheet information is defined for each quadrature point.";
195  message << "Define fibre-sheet information for each element instead.";
196  EXCEPTION(message.str());
197  }
198 }
199 
200 // Explicit instantiation
ElectroMechanicsProblemDefinition(QuadraticMesh< DIM > &rMesh)
void SetContractionCellFactory(AbstractContractionCellFactory< DIM > *pCellFactory)
AbstractContractionCellFactory< DIM > * mpContractionCellFactory
#define EXCEPTION(message)
Definition: Exception.hpp:143
void SetContractionModel(ContractionModelName contractionModel, double timestep)
const double DOUBLE_UNSET
Definition: Exception.hpp:56
void SetMaterialLaw(CompressibilityType compressibilityType, AbstractMaterialLaw< DIM > *pMaterialLaw)
void SetVariableFibreSheetDirectionsFile(const FileFinder &rFibreSheetDirectionsFile, bool definedPerQuadPoint)
void SetApplyAnisotropicCrossFibreTension(bool applyCrossFibreTension, double sheetTensionFraction, double sheetNormalTensionFraction)
void SetDeformationAffectsElectrophysiology(bool deformationAffectsConductivity, bool deformationAffectsCellModels)
void SetApplyIsotropicCrossFibreTension(bool applyCrossFibreTension, double crossFibreTensionFraction)
void SetUseDefaultCardiacMaterialLaw(CompressibilityType compressibilityType)