Chaste  Release::2017.1
AbstractAssemblerSolverHybrid.hpp
1 
2 /*
3 
4 Copyright (c) 2005-2017, University of Oxford.
5 All rights reserved.
6 
7 University of Oxford means the Chancellor, Masters and Scholars of the
8 University of Oxford, having an administrative office at Wellington
9 Square, Oxford OX1 2JD, UK.
10 
11 This file is part of Chaste.
12 
13 Redistribution and use in source and binary forms, with or without
14 modification, are permitted provided that the following conditions are met:
15  * Redistributions of source code must retain the above copyright notice,
16  this list of conditions and the following disclaimer.
17  * Redistributions in binary form must reproduce the above copyright notice,
18  this list of conditions and the following disclaimer in the documentation
19  and/or other materials provided with the distribution.
20  * Neither the name of the University of Oxford nor the names of its
21  contributors may be used to endorse or promote products derived from this
22  software without specific prior written permission.
23 
24 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
25 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
28 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
30 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 
35 */
36 
37 #ifndef ABSTRACTASSEMBLERSOLVERHYBRID_HPP_
38 #define ABSTRACTASSEMBLERSOLVERHYBRID_HPP_
39 
40 #include "AbstractFeVolumeIntegralAssembler.hpp"
41 #include "AbstractLinearPdeSolver.hpp"
42 #include "NaturalNeumannSurfaceTermAssembler.hpp"
43 
54 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM, unsigned PROBLEM_DIM, InterpolationLevel INTERPOLATION_LEVEL>
56  : public AbstractFeVolumeIntegralAssembler<ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM, true, true, INTERPOLATION_LEVEL>
57 {
58 protected:
59 
65 
68 
69 
70 public:
71 
80  : AbstractFeVolumeIntegralAssembler<ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM, true, true, INTERPOLATION_LEVEL>(pMesh),
81  mNaturalNeumannSurfaceTermAssembler(pMesh,pBoundaryConditions),
82  mpBoundaryConditions(pBoundaryConditions)
83  {
84  assert(pMesh);
85  assert(pBoundaryConditions);
86  }
87 
92  {
93  }
94 
107  void SetupGivenLinearSystem(Vec currentSolution, bool computeMatrix, LinearSystem* pLinearSystem);
108 };
109 
110 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM, unsigned PROBLEM_DIM, InterpolationLevel INTERPOLATION_LEVEL>
112  bool computeMatrix,
113  LinearSystem* pLinearSystem)
114 {
115  assert(pLinearSystem->rGetLhsMatrix() != nullptr);
116  assert(pLinearSystem->rGetRhsVector() != nullptr);
117 
118  // Assemble the matrix and vector calling methods on AbstractFeVolumeIntegralAssembler
119  this->SetMatrixToAssemble(pLinearSystem->rGetLhsMatrix());
120  this->SetVectorToAssemble(pLinearSystem->rGetRhsVector(), true);
121 
122  if (currentSolution != nullptr)
123  {
124  this->SetCurrentSolution(currentSolution);
125  }
126 
127  if (computeMatrix)
128  {
129  this->Assemble();
130  }
131  else
132  {
133  this->AssembleVector();
134  }
135 
136  // Add the Neumann boundary conditions. The boundary conditions put into the BoundaryConditionsContainer
137  // are assumed to be natural Neumann BCs.
138  mNaturalNeumannSurfaceTermAssembler.SetVectorToAssemble(pLinearSystem->rGetRhsVector(), false);
140 
141  pLinearSystem->FinaliseRhsVector();
142  pLinearSystem->SwitchWriteModeLhsMatrix();
143 
144  // add Dirichlet BCs
145  mpBoundaryConditions->ApplyDirichletToLinearProblem(*pLinearSystem, true);
146 
148  //mpBoundaryConditions->ApplyPeriodicBcsToLinearProblem(*pLinearSystem, true);
149 
150  pLinearSystem->FinaliseRhsVector();
151  pLinearSystem->FinaliseLhsMatrix();
152 }
153 
154 #endif /*ABSTRACTASSEMBLERSOLVERHYBRID_HPP_*/
NaturalNeumannSurfaceTermAssembler< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM > mNaturalNeumannSurfaceTermAssembler
void FinaliseLhsMatrix()
Mat & rGetLhsMatrix()
Vec & rGetRhsVector()
AbstractAssemblerSolverHybrid(AbstractTetrahedralMesh< ELEMENT_DIM, SPACE_DIM > *pMesh, BoundaryConditionsContainer< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM > *pBoundaryConditions)
void SetCurrentSolution(Vec currentSolution)
BoundaryConditionsContainer< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM > * mpBoundaryConditions
void FinaliseRhsVector()
void SetupGivenLinearSystem(Vec currentSolution, bool computeMatrix, LinearSystem *pLinearSystem)
void SwitchWriteModeLhsMatrix()
void SetMatrixToAssemble(Mat &rMatToAssemble, bool zeroMatrixBeforeAssembly=true)
void SetVectorToAssemble(Vec &rVecToAssemble, bool zeroVectorBeforeAssembly)