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Abstract 
CardioELSE is a computational tool for cardiac simulation. In detail, it is a 
parallel solver for the bidomain equations based on spectral elements 
developed on unstructured all-hexahedral grids. The current cell level 
electrophysiology functionality in CardioELSE includes the Luo–Rudy I 
membrane model. It has been developed within the EU FP7 cardiac modeling 
project preDiCT (www.vph-predict.eu/) as a research and proof-of-principle 
software. CardioELSE was tested on benchmark cases and on patient-specific 
realistic heart models. Parallelization and portability are realized through the 
PETSc parallel library and the code will run on any cluster with from 1 to 128 
or more CPUs. The package is being developed by a team mainly based at the 
Bioinformatics Laboratory of CRS4 (www.crs4.it/bioinformatics), drawing 
inspiration from many years expertise of research and application of spectral 
elements to a diverse set of compute-intensive physical problems on complex 
geometries from fields including geophysics, continuum mechanics, and 
electromagnetics. 
 

http://www.crs4.it/bioinformatics
http://www.vph-predict.eu/


1 What is CardioELSE? 

CardioELSE is a computational tool for the simulation of the cardiac electrophysiology on large, 
realistic models of the heart. CardioELSE aims to simulate the propagation of electrical potential in 
cardiac tissue, modeled by the bidomain equations; the cell response is described by the Luo–Rudy I 
model. It is based on spectral elements and is designed to run in parallel on distributed memory 
machines. 

2 Introduction 

The discretization of a realistic heart geometry with a satisfactory node spacing can result in a mesh 
containing millions of nodes. Hence, the algebraic systems resulting from low-order methods like 
Finite Elements (FE) are very large and whole heart simulation using the bidomain model is a 
demanding scientific computing problem [2]. An alternative to mesh refinement (used by FE) is to 
improve the quality of numerical simulations by expressing the solution in terms of polynomial 
functions of high degree on a relatively coarse mesh. This is the idea at the base of spectral elements 
[4]. As far as we know, the only attempts to use spectral elements for cardiac simulation include the 
use of Fourier polynomials, when periodic boundary conditions can be assumed, algebraic 
polynomials in triangles (for 2D applications, see  [5] and references therein), and the spectral 
smoothed boundary method [3].  

3 CardioELSE in practice 

Here we provide a quick review of how CardioELSE works, including preprocessing, analysis and 
visualization of the results.  

3.1 Preprocessing  

CardioELSE accepts hexahedral grids provided either in Abaqus format or in Chaste format (feature 
not included in this release). In all cases, CardioELSE will take care to add extra grid points 
corresponding to spectral degree > 1: this operation is completely transparent to the user. Figure 1 
shows an example of an Abaqus grid (partial view). Grid point coordinates are listed in Fortran style, 
with indices starting from 1: gaps in the indices are not allowed. Element connectivities are listed as 
usual: element indices (1st column) are discarded and automatically set in consecutive order starting 
from 1. The element headline includes the definition of the element type (C3D8R are 8-points 
hexahedra for Abaqus), while ELSET=EB1 denote that following elements below to block 1.  



 

*HEADING  

UPF model with top cut - Author: G. Fotia, CRS4 - Jan 2011  

Units: [cm] – grid size: 0.1 cm (average) 

*NODE  

       1,    0.0513431,   -1.7192150,   -4.2320250  

       2,    0.3564533,   -1.8158830,   -4.2055330  

       3,    0.4163079,   -1.7833180,   -3.9767760  

       4,    0.1278995,   -1.7087120,   -4.0294250  

                                ...  

*ELEMENT, TYPE=C3D8R, ELSET=EB1                    

       1,       1,        2,        3,        4,        5,        6,        7,         8  

       2,       9,       10,      11,      12,      13,      14,      15,      16  

       3,      17,      18,      14,      13,      19,      20,      21,      22  

       4,      13,      14,      15,      16,      22,      21,      23,      24  

       5,      25,      26,      27,      28,      29,      30,      31,      32  

                                ... 

Figure 1: An example of all hexahedra grid in Abaqus format. Only 4 nodes and 5 connectivities are shown. 

The definition of different volume blocks allows to account for piecewise constant cardiac tissue 
(feature not included in this release). For the sake of simplicity, boundary conditions and source 
regions are set via scalar cut planes (see section 3.2.2) rather than through mesh elements. The same 
considerations apply to grids in Chaste format: in that case, only .node and .ele files are needed for 
each grid1. 

3.2 Analysis setup 

The setup of the numerical simulation is provided by means of several input files, which should be 
edited and customized by the user.  

3.2.1 File “CardioELSE.input” 

An example of the file CardioELSE.input is displayed in figure 2.  

 

./MODELS/UPFNoTop_0.1cm.model  

1                              ! spectral degree  

xdmf                           ! graphic files format (vtk/xdmf)  

.false.                        ! write iteration history on a file  

.false.                        ! write SE grid (Abaqus format)  

.false.                        ! write non-zero-entries-per-row histogram 

Figure 2: Structure of the input file "CardioELSE.input" 

The first line is the name of the model file (described later): then comes the spectral degree. At line 3, 
the choice between VTK or XDMF format (feature not included in this release) for the snapshots of the 
transmembrane potential at given times is set. Other lines concern the possibility to:  write the iteration 

                                                
1 In our opinion, the best all-hexahedra grid generator currently available is Cubit (cubit.sandia.gov), 
which also comes with the Tetmesh engine by Distene/INRIA for tetrahedral grid generation. Cubit allows to save 
grids in the format illustrated in figure 1 by selecting the options Abaqus format. A former invocation of the 
command compress eliminates gaps in the numbering of grid points. Grids in the format at hand can also be 
imported by Cubit, modified (for instance to refine or smooth the mesh) and then exported again. Of course, 
mesh generators other than Cubit can be used as well, provided the structure shown in figure 1 is preserved.  



history on a file; generate a file containing the whole spectral grid, including the newly added nodes for 
spectral degrees > 1, in Abaqus format (feature not included in this release); provide a text file with the 
non-zero-entries-per-row distribution, useful for particular tasks (e.g. the choice of the proper matrix 
format for the implementation of the matrix-vector product on GPUs). 

3.2.2 The model file 

An example of model file is displayed in figure 3. The first line contains the name of the grid file. The 
extension .inp indicates a file written in Abaqus format. When using the Chaste format, the user should 
provide the name of the files without extension. For instance, if the following is specified:  

./GRIDS/UPFNoTop_0.1cm         ! grid file  

 
CardioELSE will look for the files UPFNoTop_0.1cm.node and UPFNoTop_0.1cm.ele. Line 2 contains 
the initial and final times of the simulation, along with the time-step to be used for the solution of the 
PDE and the ODE, respectively. All times are expected in milliseconds. A further, optional argument is 
the output time-step, described later. Line 3 refers to stimulus parameters: start, end, duration, period. 
Refer to figure 5 for the interpretation of such parameters. Line 4 deals with boundary conditions 
(BCs). In general, CardioELSE expects BCs to be of homogeneous Neumann type on the whole 
boundary except for a specific region defined by the user. In that region BCs are set independently of 
the internal and external potential ui , ue: for instance: 
 

DN                            ! boundary conditions on u_i, u_e (Dir/Neu) 

 
means that, on that region, a Dirichlet BC for ui and a Neumann BC for  ue have been set. 
 

./GRIDS/UPFNoTop_0.1cm.inp       ! grid file  

0.  100.  0.005  0.01  20.       ! t0, t_fin, dt_ODE, dt_PDE [,dt_out] (ms)  

0.  1200.  2.  375.              ! stimulus start, end, duration, period (ms)  

DN                               ! boundary conditions on u_i, u_e (Dir/Neu)  

-83.853      0.0                 ! amplitudes Dirichlet solution (mV)  

0.       -4000.0                 ! amplitudes Neumann stimulus (microA/cm^2)  

0.           0.0                 ! amplitudes applied currents (microA/cm^2)  

z < -5.                          ! location of BCs or of applied currents  

3                                ! # receivers  

0.      2.     -5.               ! receiver's coordinates (cm)  

0.      2.     -2.5              ! receiver's coordinates (cm)  

0.      2.      0.               ! receiver's coordinates (cm)  

0                                ! # snapshots  

Figure 3: Structure of the model file 

Lines 5 and 6 refer to the right hand side of BCs: in this case  ui=-83.853 mV, while the Neumann 

stimulus on ue  equals -4000.0 A/cm2.  



 

 

Line 7 contains information on amplitudes of (possibly) applied currents, respectively to internal and 
external cellular domain. Through line 8 the user can specify the region where BCs and possibly 
external currents are applied, using 1, 2 or 3 scalar cut planes (no more than one per dimension). In 

the case shown in figure 3, the condition identifies that part of the boundary such that z<-5; another 

example of admissible condition is the following: 
 

z < -5. ,  x>0, y<3.14         ! location of BCs or applied currents 

Note that conditions on different coordinates are separated by commas. Line 9 refers to nrec, the 

number of receivers, i.e. points of the cardiac tissue where the time-history of transmembrane 
potential should be recorded and written into a file (e.g. file “rec_023.d” contains the time-history of the 

23rd receiver). Receivers' coordinates (in cm) follow from line 10 to 9 + nrec. Users should be aware 

that, within this code release, the solution is not interpolated on the exact position of receivers: 
instead, the closest grid point is used. When working with coarse grids, this can give rise to a small 

bias on the fast depolarization phase. Lastly, line  10 + nrec is used to specify nsnap, the number of 

snapshots, i.e. the records of the full 3D transmembrane potential in the whole domain at given time. 

There are two options for specifying snapshot times: explicitly, indicating a value of nsnap>0 and then 

nsnap values for the snapshot times (in ms); automatically, specifying nsnap=0 and a value for the 

optional  output time-step dt_out (line 2). For instance, with the model file of figure 3, snapshots will 

be saved every 20 ms starting from t=0. In both cases, snapshots will be saved in a file called 
“V_nnn.vtk.gz” or “V_nnn.xdmf”, depending on the format selected, where nnn is the number of the 

snapshot. If no snapshots are required, then dt_out should not be indicated, and nsnap should be set 

to 0. 

Figure 4: Example of stimulus with start=0.3, end=1., duration=0.2, period=0.6. No time 
units specified. 



3.2.3 File “membrane.input” 

An example of the file “membrane.input” is displayed in figure 5. 

1400.                        ! Chi [1/cm] membrane area per tissue volume  

1.0                          ! C_m [microF/cm^2] surface capacitance  

1.75                         ! D^i [10^(-3)/(Ohm x cm)] conductivity tensor  

7.0                          ! D^e [10^(-3)/(Ohm x cm)] conductivity tensor  

Figure 5: Example of the file "membrane.input" 

The file is self-descriptive. While the CardioELSE data structure has been designed for general 
conductivity tensors, in this release the tensors are supposed to be proportional to the identity matrix, 

with proportionality constants defined by D^i and D^e in figure 5.   

3.2.4 File “lin_solv.input” 

An example of the file “lin_solv.input” is displayed in figure 6. 

 

1                        ! algebraic_solver (0-> CG + diagonal precond.; 1->PETSc)  

!  

! ----------- inputs for the CG + diagonal precond.  solver -------------- 

10000   10000            ! max # iterations, conditional max # iterations  

1.e-06  1.e-06           ! tolerance, conditional tolerance,  

1                        ! solver (1--->CG, 2--->CGS, 3--->SYMMLQ, 4--->symm_QMR)  

1                        ! use diagonal preconditioner? (0--->no; 1--->yes)  

! ------------------------------------------------------------------------  

!  

! ------------------------ inputs for PETSc ------------------------------  

1.e-05                   ! rtol  

1.e-50                   ! abstol  

1.e+10                   ! dtol  

10000                    ! maxits  

! ------------------------------------------------------------------------  

Figure 6: Example of the file "lin_solve.input" 

Through this file it is possible to set the options for the solution of the algebraic system: this task is 
performed using the library PETSc2, unless the label in the first line is set to 0: in this case a simple 
solver based on Conjugate Gradients (CG) with diagonal preconditioner is used3 (available only for the 

sequential case). In this release of CardioELSE,  conditional max # iterations and  conditional 

tolerance are not used. As for PETSc, parameters  rtol, abstol, dtol, maxits, may be specified, 

such that maxits is the maximum number of iterations, and convergence is detected at iteration k if  

|| r_k || = || b - A*x_k || < max (rtol * ||b|| , abstol) . 
These settings may be overridden by run-time option specification (see the PETSc manual [1]). 

                                                
2 S. Balay, J. Brown, K. Buschelman, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. 

Zhang, PETSc Web page, www.mcs.anl.gov/petsc/, 2011 
3 This has been done to prevent time-to-time PETSc warnings relating to a non-positive-definite preconditioner 

when using CG  

http://www.mcs.anl.gov/petsc/


3.3 Run 

In this section we focus on analyses performed by PETSc: use of the sequential Conjugate Gradients 
with diagonal preconditioner is straightforward. Parallel analyses on either computer clusters or 
shared-memory machines can be launched by standard PETSc invocations, e.g. 

mpirun -np 16 CardioELSE_V1.0_Intel.exe -pc_type bjacobi -ksp_type gmres -

ksp_monitor_true_residual 

for use of the block Jacobi preconditioner with the GMRES solver. These settings override those 
specified in the file “lin_solv.input”: see the PETSc manual [1] for a full list of possible options. Since 

the option -ksp_monitor_true_residual forces PETSc to print the true residual at each iteration, it can 

slow down the simulation and should be used only for testing or convergence studies, not for timing.  

Once the simulation starts, a simple text report is visualized, including the mean features of the model 
and the status of the analysis, as shown in figure 7.  

 

reading the gridfile './GRIDS/UPFNoTop_0.1cm.inp' ... done.  

  

average dx,dy,dz = 0.101 , 0.113 , 0.123  

X range: -4.21 to 3.96 ( range extension: 8.17 )  

Y range: -4.11 to 7.12 ( range extension: 11.2 )  

Z range: -5.93 to 1.22 ( range extension: 7.16 )  

  

spectral degree:                                2  

# macro-gridpoints:                           13691  

# spectral gridpoints:                         95981  

# non-Dirichlet spectral DOF :           189867  

# nnz:                                                 6629891  

# elements:                                        10328  

# Dirichlet BC elements:                     484  

# Neumann BC elements:                  484 

t_0, t_fin, dt_ODE, dt_PDE (all [ms]) =  0.0     1.0    0.50E-02 0.10E-01  

  

Time loop has started (PETSc)...  

25% - 50% - 75% - 100%            done  

Figure 7: The screen report on model features and analysis status 

Among them, the average grid size; the domain extension (useful to check if the proper units are used: 
CardioELSE needs grid point coordinates in cm); the spectral degree; the number of spectral grid 
points, including those added when the spectral degree is greater than 1; the size of the linear system 
after that the degrees of freedom corresponding to Dirichlet conditions have been dropped; the time-
advancing stage of the simulation. 

3.4 Output 

CardioELSE produces a few output files by default: some others are requested on user demand. 

3.4.1 Time-histories (optional) 

File “rec_nnn.d” contains the time-history evaluated at the nnn-th receiver, in ASCII X-Y format, ready 



to use with any simple 2D visualization tool, for instance Xmgrace (plasma-
gate.weizmann.ac.il/Grace/). 

3.4.2 Snapshots (optional) 

File “V_nnn.vtk” or “V_nnn.xmdf” contains the snapshot evaluated at the nnn-th time, ready to use with 
any tool for 3D visualization, like MayaVi (mayavi.sourceforge.net/) or Paraview (www.paraview.org/).  

3.4.3 Spectral grid (optional) 

If requested, CardioELSE generates an Abaqus file containing the whole spectral grid. This option is 
disabled in this release.  

3.4.4 Convergence history (optional) 

Upon request, the file “iterations_info.output” is generated, containing the history of convergence of 
the iterative method used, along with the main features of the method itself. 

3.4.5 Stimulus (by default) 

The file “stimulus.d” contains the time-history of the stimulus, in ASCII X-Y format, ready to use with 
any simple 2D visualization tool.  

3.4.6 Execution times (by default) 

Execution times of CardioELSE are measured and reported in the file “execution_times.d” which is 
incremented at each analysis and includes: the spectral degree; the time needed to read the grid, to 
carry out the preprocessing (building the spectral grid, assembling arrays, etc.), to perform the time-
loop; the average number of iterations. 

3.4.7 Non-zero-entries-per-row (optional) 

CardioELSE may provide a text file named “non_zero_histogram.d” with the non-zero-entries-per-row 
distribution. 

4 Referencing CardioELSE 

The software is released as citeware. The following references are appropriate: [6], [7], [8]. 

5 Availability and portability 

CardioELSE may be downloaded from www.comlab.ox.ac.uk/chaste/download.html in the following forms: 
source code (Fortran 90). It is released as open-source code under the GNU Lesser General Public 
License (either version 3.0 or, at the user’s option, any later version). 
CardioELSE can be run on any Linux platform with access to the following libraries (version numbers 
indicate those for which regular testing is carried out – other versions may also work, but are not 
currently supported): MPI, PETSc (version 3.0 and 3.1), and BLAS/LAPACK or Intel MKL. 
In order to compile from source, the following tools are required: GNU or Intel compiler. 

6 Licence information 

CardioELSE is free software; you can redistribute it and/or modify it under the terms of the GNU 
Lesser General Public License (as published by the Free Software Foundation) version 3.0 dated 29 
June 2007. CardioELSE is distributed in the hope that it will be useful, but WITHOUT ANY 
WARRANTY; without even the IMPLIED WARRANTY OF MERCHANTABILITY or FITNESS FOR A 

http://www.paraview.org/
http://www.comlab.ox.ac.uk/chaste/download.html


PARTICULAR PURPOSE. See the terms and conditions of the GNU Lesser General Public License 
for more details. 
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