Porting Chaste Natively to Windows

Adedayo Adetoye
University of Oxford, UK

April 30, 2013

Abstract

This document describes how to build, deploy and test Chaste on 64-bit Windows 7 using Visual Studio
2012 or Visual Studio 2010. Building on newer versions of Windows should be possible too, but has not
been tested. The document highlights potential pitfalls, and workarounds to them, and discusses how the
automated builders that have been implemented to build Chaste and its third-party library dependencies
work. It concludes with a brief discussion of issues encountered while deploying the solution to the build
and testing server.

1 Prerequisites

1.1 Software

The native Window’s port of Chaste was built with CMake, so, naturally, CMake is a required software. A
minimum version of 2.8 is recommended. Some code auto-generation is done during the build which may need
to obtain revision information from the subversion repository. This feature requires a proper command-line svn
client to be installed, not a shell extension like TortoiseSVN. I used SIikSVN, but there are other distributions,
such as the one provided by Collabnet, which requires registration. I could not completely jettison Cygwin
in the PETSc build, but almost succeeded. I suspect newer versions of PETSc may support a purely CMake-
based build. So, for now Cygwin is still needed in the initial stages of configuring PETSc. For the day-to-day
continuous testing of Chaste, Cygwin with ssh server package is also needed. Python is used in various places
such as during PETSc configuration, and natively, for code generation by CXXTest. A Python version 2.7.x is
recommended. For MPI, I used the implementation provided by Microsoft’s HPC Pack. Of course, you need
a recent Visual Studio’s C++ compiler or the Visual C++ redistributable from Microsoft. Chaste and its all its
third-party library dependencies were successfully built using Visual Studio 2010 and 2012.
In short, the following software are required:

1. CMake (from www.cmake.org, at least version 2.8)
. A command-line SVN client (e.g free SIikSVN from http://www.sliksvn.com/en/download/)

. Cygwin (from http://cygwin.com, for PETSc configuration)

A~ W

. An MPI implementation (e.g. Microsoft HPC Pack, or the OpenMPI (from http://www.open-mpi.org/)
implementation)

)

. Visual Studio C++ compiler (2010 or 2012 version).
6. Python 2.7.x
7. If manually building, an unzip tool that can decompress .tar, .gz etc. (Recommend the open-source 7-Zip

utility from http://www.7-zip.org/)

1.2 Third-party libraries

The following third-party libraries were needed to build Chaste.

1. Boost (in particular, the filesystem, system, and serialization libraries)

. PETSc

. Parmetis & Metis
HDF5

. f2cblas

. f2clapack
7. Sundials cvodes and nvecserial
8. msmpi (or other MPI implementations)

I shall now describe how to build these libraries, and in the case of msmpi, its installation.

2 Microsoft HPC Pack 2012 MS-MPI Redistributable Package

Download the relevant stand-alone, and redistributable, installer for the Microsoft MPI implementation from

http://www.microsoft.com/en-gb/download/details.aspx ?id=36045

For 64-bit build, install mpi_x64.Msi. There is also a 32-bit implementation for 32-bit builds. A typical install
path is C:\Program Files\Microsoft HPC Pack 2012\

Note

The Chaste build requires PETSc to be configured to use MPI. Thus the path to the MPI installation must
be specified during the configuration of PETSc prior to building. However, PETSc will not be able to find
the libraries if the path contains any space in it! So, the default installation in the "Program Files” directory
will not work! You can circumvent this problem by creating a soft symbolic link that has no space in it to the
installation path.

Use the mklink command to create a suitable link. For example:

C:\> mklink /D MSHPC.PACK2012 “C:\Program Files\Microsoft HPC Pack 2012”

This creates a soft link named MS HPC_PACK 2012 at the root of the C: drive, that points at the Microsoft
MPI installation directory C:\Program Files\Microsoft HPC Pack 2012\. The ”/D” switch simply says that
the symbolic link points to a directory, as opposed to an ordinary file.

3 Building PETSc

The building of PETSc was the most problematic of all the third-party libraries. Chaste requires PETSc to be
configured with PARMETIS and MPI. Configuring PETSc with PARMETIS and MPI on Windows is nontriv-
ial. The strategy that worked in the end was to let the PETSc configure process to automate as little as possible,
to get it to complete successfully. The configure process takes very long, which can easily stack up when you
are doing it over and over again. Luckily, I have created a CMake build file that automates the process and
shrink-wraps what I have learnt so far in configuring and building PETSc into a simple point-and-click so-
lution that takes almost all the pain away. From henceforth, let us call this tool ChasteThirdPartyLibBuilder.
ChasteThirdPartyLibBuilder not only builds PETSc, but also all the third-party library dependencies of Chaste.
I document here some of the things to watch out for, for reference, but it also gives me an opportunity to explain
what the automated build system is doing behind the scenes.

The configure process of PETSc, on a successful completion, generates CMake build files (in addition to
the traditional make files). According to the PETSc website, from version 3.3 onwards, a CMake build file is
automatically generated as long as the CMake is available on the platform to enable parallel build. But it gives
us an opportunity, once the configuration is successful, to build a truly native PETSc with Visual C++ and not
have to rely on libraries, such as PARMETIS, which are built under Cygwin through the win32fe front-end to
cl.

—_
[=BNR-CREN e NIV, TN NS I SR

PR — = = om
— S0V IONN AW —

0NN AW~

[
W N~ OO

Finding Cygwin

if (CYGWIN_ROOT_DIR)
set (CYG_HINTS "${CYGWIN_ROOT_DIR}/bin" "C:/Cygwin/bin" "D:/Cygwin/bin"
"E:/Cygwin/bin"
"F:/Cygwin/bin")
else ()
set (CYG_HINTS "C:/Cygwin/bin" "D:/Cygwin/bin" "E:/Cygwin/bin" "F:/Cygwin/bin")
endif ()

#Find Cygwin bash
find program (CYGWINBASH bash HINTS ${CYG_HINTS})

if (CYGWINBASH STREQUAL "CYGWINBASH-NOTFOUND")
option (AUTO_INSTALL_CYGWIN OFF "Should I attempt to automatically install
Cygwin and the
required software")
message (FATAL_ERROR "Cygwin is required to build PETSc. I can auto-install it
for you if
you enable the option AUTO_INSTALL_CYGWIN above.")
else ()
unset (AUTO_INSTALL_CYGWIN CACHE)
endif ()

As mentioned earlier, Cygwin is needed to at least configure PETSc. As shown above, ChasteThird-
PartyLibBuilder tries to locate the bash command-line program (line 9) with the find_program construct, look-
ing at likely places as suggested by the CYG_HINTS variable values. If this program is not found, the variable
CYGWINBASH takes on a vale of "CYGWINBASH-NOTFOUND?”, in which case an option is immediately
provided to the user to ask if they want ChasteThirdPartyLibBuilder to automatically install Cygwin. If the
user selects this option, Cygwin is automatically downloaded and installed with a minimal number of packages
needed to configure PETSc. The packages, as suggested below, are mingw64-i686-gcc-core, gendef, python,
cmake, make, and openssh. The openssh package is not strictly needed for PETSc configuration, but is used
for the automated testing infrastructure at Oxford. If you are manually installing Cygwin, those packages must
be enabled.

Automated Install of Cygwin with the necessary packages

if (CYGWIN_ROOT_DIR AND NOT EXISTS "${CYGWIN_ROOT_DIR}")
set (C_COMMAND ${DOWNLOAD_DIR}/cygwin_installer/setup.exe —--root
${CYGWIN_ROOT_DIR}
--site http://ftp.heanet.ie/mirrors/cygwin --no-shortcuts --quiet-mode
—-disable-buggy-antivirus
—--packages mingw64-1686-gcc-core, gendef, python, cmake, make, openssh)
#gcc4-core and zlib seem to be optional Cygwin packages. I added them while
hunting down
#the MS MPI PETSc integration failure
#In the end, they don’t contribute to the solution. Keeping a record here for
reference.
#0penssh is needed for the automated testing platform for Chaste.
#It is not be needed if the intention is to just build PETSc.

The Cygwin install location is a settable parameter, that is contained in the variable CYGWIN_ROOT_DIR.
Once Cygwin has been installed, or found otherwise, ChasteThirdPartyLibBuilder will not install another copy
regardless of how many times it is re-run. If you manually installed Cygwin, ensure that the required packages
mentioned earlier are installed. As you can see above, a download mirror site http.//ftp.heanet.ie/mirrors/cygwin
was used, which can be changed, but make sure it points to the root of the Cygwin distribution, otherwise you
will get error messages saying certain .ini files cannot be found and the download/installation will not succeed.

Once Cygwin has been installed (assuming it was installed at C:\cygwin) you can log in from the terminal
into Cygwin’s bash prompt as follows:

1

I'The mirror site http://ftp.heanet.ie/mirrors/cygwin, in Ireland, seems to be the closest official mirror to us that is listed on the Cygwin
website.

C:\> C:\cygwin\Cygwin --login

The following steps are automatically carried out by ChasteThirdPartyLibBuilder but described here for in-
formation purposes. Download the PETSc libraries from http://ftp.mcs.anl.gov/pub/petsc/release-snapshots/petsc-
3.3-p6.tar.gz. The URL points to the latest PETSc release at the time of this writing. You also need to download
PARMETIS, METIS, F2CBLAS, and F2CLAPACK, which are all enabled in the Chaste PETSc build. The
native Windows build of these libraries are described later in this document. It is advised to use the versions
distributed on the PETSc website, which may contain (but I did not confirm this) PETSc-specific patches. If
you are using ChasteThirdPartyLibBuilder the particular version of these libraries for your PETSc distribu-
tion is automatically downloaded and built. The information about the relevant versions of these libraries are
contained in the PETSc python build scripts named after each library (e.g. parmetis.py for the PARMETIS
distribution), in the directory $PETSC_SRC/config/PETSc/packages. The relevant URL is stored under a field
called self.download of the Configure class defined in the relevant file for each dependent library. Because the
information about the location of the dependent libraries can be obtained from the PETSc distribution, only the
PETSc URL needs to be specified. This must be entered into a CMake file called ChasteThirdPartyLibs.cmake
shown below. The ChasteThirdPartyLibBuilder tool reads this file and downloads, configures, builds and
installs these libraries ready to be used to build Chaste.

$CHASTE_SRC/cmake/ChasteThirdPartyLibs.cmake

#URLs to Third party libraries needed by Chaste

Specify the urls of the libraries you want to build separated by spaces and/or
newlines,

or as separate strings.

Note that the URLS of PARMETIS, METIS, F2CBLAS, F2CLAPACK are all
automatically obtained

from the PETSc distribution once it has been downloaded and unzipped. So,
there is no need

to manually specify the URLs for these libraries

set (PETSC_URLS
"http://ftp.mcs.anl.gov/pub/petsc/release-snapshots/petsc-3.3-p6.tar.gz")
set (HDF5_URLS
"http://www.hdfgroup.org/ftp/HDF5/current/src/hdf5-1.8.10-patchl.tar.gz")
set (SUNDIALS_URLS

"https://computation.llnl.gov/casc/sundials/download/code/sundials-2.5.0.tar.gz")
set (BOOST_URLS

"http://kent.dl.sourceforge.net/project/boost/boost/1.53.0/boost_1_53_0.tar.gz"

"http://kent.dl.sourceforge.net/project/boost/boost/1.52.0/boost_1_52_0.tar.gz")

However, notice the option --with-mpi-lib=/cygdrive/c/MS_HPC_PACK _2012/Lib/amd64/libmsmpi.a The
library archive libmsmpi.a must be generated from the Microsoft MPI dll, msmpi.dll, which may be found in
C:/Windows/System32. Enabling PETSc with the MPI libraries from the Microsoft HPC Pack will not work
otherwise. I now describe the steps required to create it manually in the next section. Note that ChasteThird-
PartyLibBuilder automates this.

3.1 Generating libmsmpi.a from Microsoft’s msmpi.dll

Regardless of how I specified the MPI option to the PETSc configuration to be used by MSVC c! through
win32fe, as described on the PETSc website, the configure process still failed to work with the libraries pro-
vided in the Microsoft’s HPC Pack. So, my only workable alternative was to use a native Cygwin C compiler in
the configuration phase. I used MinGW’s 64-bit GCC port: i686-w64-mingw32-gcc. But i686-w64-mingw32-
gcc cannot really use the libraries from the MS HPC Pack directly. The MPI library must be generated
from msmpi.dll in a suitable format usable by i686-w64-mingw32-gcc. To do this, first copy msmpi.dll from
C:/Windows/System32 to the installation directory of the 64-bit MPI libraries. In my case this was at the
(symbolic link) directory C:/MS_HPC_PACK_2012/Lib/amd64. Issue, the following commands within Cyg-

0NN AW~

win bash console to generate the desired library. I assume that gendef and i686-w64-mingw32-dlitool are on
your PATH.

$ cd /eygdrive/c/MS_HPC_PACK _2012/Lib/amd64

$ cp /cygdrive/c/Windows/System32/msmpi.dll . # copy to current directory

$ gendef msmpi.dll #generates msmpi.def. Before issuing the next command, msmpi.def must be modified
$ 1686-w64-mingw32-dlitool -d msmpi.def -D msmpi.dll -1 libmsmpi.a #generates libmsmpi.a

3.1.1 Fixing issues with calling convention incompatibilities.

Let’s be honest, everyone does as they like when it comes to calling conventions, even between different
versions of the same compiler, not to talk of library interoperability between a Unix compiler and MSVC. This
fact came to bite after issuing the commands above and after the very long wait for PETSc configuration, it
came back with a failure message that the MPI options did not work. Trawling through the log files revealed
a linker error, to the effect of ”Undefined reference to MPI _Init in”. Looking at the file msmpi.def and (and
nm dump of the generated libmsmpi.a), MPI_Init@8 was one of the exported functions, which was the function
the linker was looking for. The ”@8” decoration, I believe, is the size of the arguments pushed on the stack by
the caller of a stdcall function and popped by the function on return. Anyway, if the linker is to recognise the
exported functions in libmsmpi.a, for PETSc configuration to be successful, those <@N> decorations must
go in all the MPI_XXX functions that use them. This can be done by modifying the generated msmpi.def file
before issuing the command

$ i686-w64-mingw32-dlltool -d msmpi.def -D msmpi.dll -1 libmsmpi.a

As usual, this operation has been automated by ChasteThirdPartyLibBuilder, and the relevant portion of
code that shows how this was done is the following.

Generating libmsmpi.a and fixing calling convention issues.

#ensure that msmpi library is available to and usable by 1i686-w64-mingw32-gcc
if (NOT EXISTS "S${MS_HPC_PACK_DIR}/Lib/amd64/libmsmpi.a")

message (STATUS "Generating ${MS_HPC_PACK_DIR}/Lib/amd64/libmsmpi.a")
file (COPY "C:/Windows/System32/msmpi.dll" DESTINATION
"${MS_HPC_PACK_DIR}/Lib/amd64™")

Generate msmpi.def file

set (C_COMMAND ${CYGWINBASH} -c "
export

PATH=\"/usr/1686-w64-mingw32/bin:/usr/1686-w64-mingw32/sys—-root/mingw/bin:
/usr/local/bin:/usr/bin:${CYG_BIN}:${MS_HPC_PACK_DIR_CYG}/Bin:S$SPATH\"
gendef msmpi.dll
")

execute_process (

COMMAND ${C_COMMAND }

WORKING_DIRECTORY "${MS_HPC_PACK_DIR}/Lib/amd64"

OUTPUT_VARIABLE cyg_log_out

ERROR_VARIABLE cyg_log_err

RESULT_VARIABLE cyg_result

)

Fix an issue with calling convention mismatch

message (STATUS "Fixing an issue with calling convention mismatch")

file (READ "${MS_HPC_PACK_DIR}/Lib/amd64/msmpi.def" deffile)

string (REGEX REPLACE "MPI_ ([a-zA-Z0-9_]+)Q@[0-9]+" "MPI_\\1" deffile_patch
"$S{deffile}")

file (WRITE "${MS_HPC_PACK_DIR}/Lib/amd64/msmpi.def" "${deffile_patch}")

Generate libmsmpi.a
set (C_COMMAND ${CYGWINBASH} -c "

export
PATH=\"/usr/i1686-w64-mingw32/bin:/usr/1686-w64-mingw32/sys-root/mingw/bin:

/usr/local/bin:/usr/bin:${CYG_BIN}:${MS_HPC_PACK_DIR_CYG}/Bin:S$SPATH\"
1686-w64-mingw32-dlltool -d msmpi.def -D msmpi.dll -1 libmsmpi.a

")

execute_process (

COMMAND ${C_COMMAND }

WORKING_DIRECTORY "${MS_HPC_PACK_DIR}/Lib/amd64"

OUTPUT_VARIABLE cyg_log_out

ERROR_VARIABLE cyg_log_err

RESULT_VARIABLE cyg_result
)

The script essentially reads the msmpi.def file, and strips away all the <@N> following any MPI_ XXX
call (see line 26).

Once the library sources have been downloaded, Cygwin has been installed, and libmsmpi.a has been
generated log in from the terminal to configure PETSc. Suppose PETSc sources were unzipped to the path
D:\libs\petsc-3.3-p6. This path maps to the Cygwin path /cygdrive/d/libs/petsc-3.3-p6 within the Cygwin
console. Once you have logged in to Cygwin, issue the following commands to configure PETSc.

$ cd /cygdrive/d/libs/petsc-3.3-p6

$ export PETSC_DIR= ‘pwd‘ # was /cygdrive/d/libs/petsc-3.3-p6

$ export PETSC_ARCH=WINDOWS_BUILD # this is the directory where build artefacts will be placed

export PATH="/usr/i686-w64-mingw32/bin:/usr/i686-w64-mingw32/sys-root/mingw/bin:/usr/local/bin:/usr/bin:
/eygdrive/c/cygwin/bin:/cygdrive/c/MS_HPC_PACK _2012/Bin:$PATH”

$ config/configure.py —with-cc=i686-w64-mingw32-gcc --with-fc=0 --with-log=1 --with-info=1
--with-shared-libraries=0 --download-f2cblaslapack --with-mpi-include=/cygdrive/c/MS_HPC_PACK_2012/Inc
--with-mpi-lib=/cygdrive/c/MS_HPC_PACK _2012/Lib/amd64/libmsmpi.a

The corresponding portion of the ChasteThirdPartyLibBuilder script is the following.
The step that configures PETSc in ChasteThirdPartyLibBuilder

#The script that configures PETSc in Cygwin

set (script "

cd ${DOWNLOAD_DIR}/petsc/${basicname}

export PETSC_DIR=‘pwd’

echo $PETSC_DIR

export PETSC_ARCH=\"${PETSC_ARCH}\"

export
PATH=\"/usr/i686-w64-mingw32/bin:/usr/i686-w64-mingw32/sys-root/mingw/bin:
/usr/local/bin:/usr/bin:${CYG_BIN}:${MS_HPC_PACK_DIR_CYG}/Bin:$PATH\"
export TMPDIR=\"S${TEMP_DIR}\"

export TEMP=\"${TEMP_DIR}\"

export TMP=\"${TEMP_DIR}\"

config/configure.py —--with-cc=1686-w64-mingw32-gcc --with-fc=0 --with-log=1
——with-info=1

——with-shared-libraries=0 --download-f2cblaslapack --useThreads=0
——with-mpi-include=${MS_HPC_PACK_DIR_CYG}/Inc
——with-mpi-1ib=${MS_HPC_PACK_DIR_CYG}/Lib/amd64/libmsmpi.a")

if (EXISTS "${DOWNLOAD_DIR}/petsc/${basicname}/${PETSC_ARCH}")

message (STATUS

"It seems PETSc has already been configured. If you wish to create a fresh
configure,

you can either delete the folder
${DOWNLOAD_DIR} /petsc/${basicname}/${PETSC_ARCH} or

change the variable PETSC_ARCH")
else ()

message (STATUS

"WAIT while PETSc is being configured. Time for a cuppa: this could take a

while ...")

set (C_COMMAND ${CYGWINBASH} -c "${script}")
execute_process (
COMMAND $ {C_COMMAND }
WORKING_DIRECTORY "${DOWNLOAD_DIR}/petsc/${basicname}"
OUTPUT_VARIABLE cyg_log_out
ERROR_VARIABLE cyg_log_err
RESULT_VARIABLE cyg_result

If all goes well, the configuration will complete with a message about the selected options and generate a
CMakeLists.txt file at the root of the PETSc source directory. We shall use this file to build PETSc.

Note

Don’t forget to enable PARMETIS in the PETSc CMake configuration file PETScConfig.cmake (instruc-
tions below) and to copy the header files parmetis.h from $PARMETIS_SRC/include folder and metis.h from
$SMETIS _SRC/include folder to $PETSc_SRC/include folder. These are needed during the build of PETSc when
PARMETIS is enabled, otherwise the build will not be totally successful.

Note that we did not enable PARMETIS during PETSc configuration above. It must be enabled by mod-
ifying the generated CMake build scripts on a successful configuration of PETSc. This is of course done
automatically by ChasteThirdPartyLibBuilder, but the changes it makes to the relevant CMake files, namely,
$PETSC_SRC/CMakeLists.txt and $PETSC_SRC/$PETSC_ARCH/conf/PETScConfig.cmake are described in
sections 3.2 and 3.3 respectively. In summary, the CMakeLists.txt is modified to link PETSc statically, with
debugging information, and to define a compiler argument __INSDIR__; and PETScConfig.cmake is modified to
enable PARMETIS and to fix library search paths when linking PETSc against the enabled external libraries.

3.2 Changes to SPETSc_SRC/CMakeLists.txt
Modify the CMake file SPETSc_SRC/CMakeLists.txt by adding the following add_definitions

Changes to $PETSC_SRC/CMakeLists.txt

#Note: -MTd => static link with debugging information, -wd4996 => disable

insecure api warnings,

#and -Z7 => embed debugging info in library as opposed to using an external .pdb

database

#-wd4005 => disable macro redefinition

#-wd4305 => truncation from typel to typeZ2

#-wd4133 => ’function’: incompatible types from typel to type2

#-wd4267 => possible loss of data: conversion from typel to typeZ2

#-wd4244 => another possible loss of data

#-wd4101 => unreferenced local variable

add _definitions (-MTd -wd4996 -Z7 -wd4005 -wd4305 -wd4133 -wd4267 -wd4244

-wd4101)

include_directories ("D:/libs/chaste/WindowsPort/cmake/install/parmetis_parmetis-4.0.2-p3/include"
"D:/libs/chaste/WindowsPort/cmake/install/metis_metis-5.0.2-p3/include")

add_definitions (-D__INSDIR__=./) # CMake always uses the absolute path

... At the end of the file, append the following line to install PETSc library

and headers

install (TARGETS petsc DESTINATION lib)

install (DIRECTORY
"D:/libs/chaste/WindowsPort/cmake/build/downloads/petsc/petsc—3.3-p6/WINDOWS_BUILD/include"

DESTINATION .
FILES_MATCHING PATTERN "x.h")

—_
[=BNR-CREN e NIV, TN "N US I O RN

[Y Y N Y g U G U Y
N = OOV~ WA W=

3.2.1 Notes about the CMake compiler options added through the add_definition directives above

These descriptions are adapted from MSDN about the following compiler options:

The option -Z7, which is passed by CMake to the MSVC compiler as ”/Z7” produces an .obj file
containing full symbolic debugging information for use with the debugger. The symbolic debugging
information includes the names and types of variables, as well as functions and line numbers. No .pdb
file is produced.

The option -MTd defines DEBUG and _MT. Defining -MT causes multithread-specific versions of the
run-time routines to be selected from the standard .h files. This option also causes the compiler to place
the library name LIBCMTD.lib into the .obj file so that the linker will use LIBCMTD.Iib to resolve
external symbols. Either /MTd or /MDd (or their non-debug equivalents /MT or MD) is required to
create multithreaded programs.

Concerning the option -wd4996. Calling any one of the potentially unsafe methods in the Standard C++
Library will result in Compiler Warning (level 3) C4996. To disable this warning, define the macro
_SCL_SECURE_NO_WARNINGS in your code: #define SCL_SECURE_NO_WARNINGS Other ways
to disable warning C4996 include: cl /wd4996 [other compiler options] myfile.cpp. In our case we used
the second, less-intrusive compiler option by passing -wd4996 through CMake. The other -wdnnnn
options to disable warnings are as explained above.

The directive add_definitions (-D__INSDIR__=./) is particularly important to note, because the PETSc
configuration did not set the value ”./”, for the PETSc-specific variable ”__INSDIR__". If this is not set,
the build will not succeed.

The install directives were added to the bottom of the file to ensure that the built PETSc libraries and
header files are installed. That is, copied to the library install location where other built libraries are
stored. This is not strictly necessary, as long as we can locate where the built library and header files are
stored during build, but installing them at a known location just makes things easier. The install location
is settable in the CMake GUI.

3.3 Content of $SPETSC_SRC/WINDOWS _BUILD/conf/PETScConfig.cmake

To enable PARMETIS, and set a bunch of other options that allow PETSc to build on Windows, the follow-
ing declarations in $PETSC_SRC/WINDOWS_BUILD/conf/PETScConfig.cmake were needed. Note that the
ChasteThirdPartyLibBuilder configures this file correctly. If manually building, set the HINTS from line 55
according to your environment.

$PETSC_SRC/WINDOWS _BUILD/conf/PETScConfig.cmake

#Patched by Chaste
set (PETSC_HAVE_PARMETIS YES)

set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set

(PETSC_HAVE_BLASLAPACK YES)
(PETSC_HAVE_F2CBLASLAPACK YES)
(PETSC_HAVE_MPI YES)
(PETSC_HAVE_MPI_COMM_C2F YES)
(PETSC_HAVE_MPI_INIT_THREAD YES)
(PETSC_HAVE_MPI_LONG_DOUBLE YES)
(PETSC_HAVE_MPI_COMM_F2C YES)
(PETSC_HAVE_MPI_FINT YES)
(PETSC_HAVE_MPI_COMM_SPAWN YES)
(PETSC_HAVE_MPI_TYPE_GET_ENVELOPE YES)
(PETSC_HAVE_MPI_FINALIZED YES)
(PETSC_HAVE_MPI_EXSCAN YES)
(PETSC_HAVE_MPI_TYPE_GET_EXTENT YES)
(PETSC_HAVE_MPI_WIN_CREATE YES)
(PETSC_HAVE_MPI_ REPLACE YES)
(PETSC_HAVE_MPI_TYPE_DUP YES)
(PETSC_HAVE_MPIIO YES)
(PETSC_HAVE_MPI_C_DOUBLE_COMPLEX YES)
(PETSC_HAVE_MPI_ALLTOALLW YES)
(PETSC_HAVE_MPI_IN_PLACE YES)

set (PETSC_HAVE_ACCESS YES)

set (PETSC_HAVE__FULLPATH YES)
set (PETSC_HAVE_SIGNAL YES)

set (PETSC_HAVE__LSEEK YES)

set (PETSC_HAVE_VFPRINTF YES)
set (PETSC_HAVE__GETCWD YES)

set (PETSC_HAVE_MEMMOVE YES)

set (PETSC_HAVE_RAND YES)

set (PETSC_HAVE__SLEEP YES)

set (PETSC_HAVE_TIME YES)

set (PETSC_HAVE_GETCWD YES)

set (PETSC_HAVE_LSEEK YES)

set (PETSC_HAVE__ VSNPRINTF YES)
set (PETSC_HAVE_VPRINTF YES)

set (PETSC_HAVE__SNPRINTF YES)
set (PETSC_HAVE_STRICMP YES)

set (PETSC_HAVE__ACCESS YES)

set (PETSC_HAVE_CLOCK YES)

set (PETSC_USE_WINDOWS_GRAPHICS YES)
set (PETSC_USE_SINGLE_LIBRARY 1)
set (PETSC_USE_MICROSOFT_TIME YES)
set (PETSC_USE_NT_TIME YES)

set (PETSC_USE_INFO YES)

set (PETSC_USE_BACKWARD_LOOP 1)
set (PETSC_USE_DEBUG 1)

set (PETSC_USE_LOG YES)

set (PETSC_USE_CTABLE 1)

set (PETSC_USE_COMPLEX NO)

set (PETSC_USE_REAL_DOUBLE YES)
set (PETSC_CLANGUAGE_C YES)

set (BLASLAPACK_HINT

"D:/libs/chaste/WindowsPort/cmake/install/f2cblaslapack_f2cblaslapack-3.1.1.qg/1ib")
set (PARMETIS_HINT
"D:/libs/chaste/WindowsPort/cmake/install/parmetis_parmetis—4.0.2-p3/1ib")

set (MS_HPC_PACK_LIB64 "C:/MS_HPC_PACK_2012/Lib/amd64"

set (PETSC_LIBRARIES

"D:/libs/chaste/WindowsPort/cmake/build2/downloads/petsc/petsc-3.3-p6/WINDOWS_BUILD4/1ib")
set (MS_HPC_PACK_INCLUDES "C:/MS_HPC_PACK_2012/Inc")

find library (PETSC_F2CLAPACK_LIB f2clapack HINTS "${BLASLAPACK_HINT}"
"S{PARMETIS_HINT}"
"${PETSC_LIBRARIES}" "${MS_HPC_PACK_LIB64}")
find library (PETSC_F2CBLAS_LIB f2cblas HINTS "S${BLASLAPACK_HINT}"
"S${PARMETIS_HINT}"
"S{PETSC_LIBRARIES}" "${MS_HPC_PACK LIB64}")
find library (PETSC_MSMPI_LIB msmpi HINTS "${BLASLAPACK_HINT}"
"S{PARMETIS_HINT}"
"${PETSC_LIBRARIES}" "${MS_HPC_PACK_LIB64}")
find library (PETSC_PARMETIS_LIB parmetis HINTS "${BLASLAPACK_HINT}"
"S{PARMETIS_HINT}"
"${PETSC_LIBRARIES}" "S${MS_HPC_PACK_LIB64}")
set (PETSC_PACKAGE_LIBS "${PETSC_PARMETIS_LIB}" "${PETSC_F2CLAPACK_LIB}"
"${PETSC_F2CBLAS_LIB}" "${PETSC_MSMPI_LIB}")
set (PETSC_PACKAGE_INCLUDES "S${MS_HPC_PACK_INCLUDES}")

4 Building F2CBlas and F2CLapack

Note that f2clapack and f2cblas are also required by PETSc, and although they are built during the PETSc
configuration in Cygwin, the resulting libraries are not usable and must be natively built on Windows with
MSVC. There are pre-built versions of these libraries for Windows online, but I have written a CMake file that

builds them natively for us. I essentially reverse-engineered the Unix Makefile to know what files are required
and how the libraries must be built. As usual, ChasteThirdPartyLibBuilder automates this: it downloads the
source file, generates the CMake build script, builds and installs the library. The generated CMake build file is
shown below. Clearly, one should not attempt to enter this by hand!

CMake build scripts for F2CBlas and F2CLapack

#Auto-generated CMake build file for f2cblaslapack libraries
cmake _minimum_required (VERSION 2.8)
project (f2cblaslapack C)

add_definitions (-U__LAPACK_PRECISION_QUAD) #remove dependency on quadmath.h
#Note: -MTd => static link with debugging information, -wd4996 => disable
insecure api warnings,

-wd4244 => conversion from ’"real’ to ’integer’, possible loss of data etc.

-wd4554 => possible operator precedence error warning

#and -Z7 => embed debugging info in library as opposed to using an external .pdb
database

add_definitions (-MTd -wd4996 -wd4244 -wd4554 -Z7)

#Allows us to change the default ordering of include directory searches

set (CMAKE_INCLUDE_DIRECTORIES_BEFORE

ON) include_directories ($ {CMAKE_CURRENT_SOURCE_DIR}/blas)

set (BLAS_SOURCES blas/pow_ii.c blas/lsame.c blas/xerbla.c blas/pow_si.c
blas/smaxloc.c

blas/sf__cabs.c blas/caxpy.c blas/ccopy.c blas/cdotc.c blas/cdotu.c blas/cgbmv.c
blas/cgemm.c blas/cgemv.c blas/cgerc.c blas/cgeru.c blas/chbmv.c blas/chemm.c

blas/chemv.c blas/cher2.c blas/cher2k.c blas/cher.c blas/cherk.c blas/chpmv.c
blas/chpr2.c blas/chpr.c blas/crotg.c blas/cscal.c blas/csrot.c blas/csscal.c
blas/cswap.c blas/csymm.c blas/csyr2k.c blas/csyrk.c blas/ctbmv.c blas/ctbsv.c
blas/ctpmv.c blas/ctpsv.c blas/ctrmm.c blas/ctrmv.c blas/ctrsm.c blas/ctrsv.c

blas/icamax.c blas/isamax.c blas/sasum.c blas/saxpy.c blas/scabsl.c
blas/scasum.cblas/scnrm2.c blas/scopy.c blas/sdot.c blas/sgbmv.c blas/sgemm.c
blas/sgemv.c blas/sger.c blas/snrm2.c blas/srot.c blas/srotg.c blas/srotm.c
blas/srotmg.c blas/ssbmv.c blas/sscal.c blas/sspmv.c blas/sspr2.c blas/sspr.c
blas/sswap.c blas/ssymm.c blas/ssymv.c blas/ssyr2.c blas/ssyr2k.c blas/ssyr.
blas/ssyrk.c blas/stbmv.c blas/stbsv.c blas/stpmv.c blas/stpsv.c blas/strmm.c
blas/strmv.c blas/strsm.c blas/strsv.c blas/pow_di.c blas/dmaxloc.c
blas/df__cabs.c blas/dasum.c blas/daxpy.c blas/dcabsl.c blas/dcopy.c blas/ddot.c

Q

blas/dgbmv.c blas/dgemm.c blas/dgemv.c blas/dger.c blas/dnrm2.c blas/drot.c
blas/drotg.c blas/drotm.c blas/drotmg.c blas/dsbmv.c blas/dscal.c blas/dsdot.c
blas/dspmv.c blas/dspr2.c blas/dspr.c blas/dswap.c blas/dsymm.c blas/dsymv.c
blas/dsyr2.c blas/dsyr2k.c blas/dsyr.c blas/dsyrk.c blas/dtbmv.c blas/dtbsv.c
blas/dtpmv.c blas/dtpsv.c blas/dtrmm.c blas/dtrmv.c blas/dtrsm.c blas/dtrsv.c
blas/dzasum.c blas/dznrm2.c blas/idamax.c blas/izamax.c blas/sdsdot.c
blas/zaxpy.c

blas/zcopy.c blas/zdotc.c blas/zdotu.c blas/zdrot.c blas/zdscal.c blas/zgbmv.c
blas/zgemm.c blas/zgemv.c blas/zgerc.c blas/zgeru.c blas/zhbmv.c blas/zhemm.c
blas/zhemv.c blas/zher2.c blas/zher2k.c blas/zher.c blas/zherk.c blas/zhpmv.c
blas/zhpr2.c blas/zhpr.c blas/zrotg.c blas/zscal.c blas/zswap.c blas/zsymm.c

blas/zsyr2k.c blas/zsyrk.c blas/ztbmv.c blas/ztbsv.c blas/ztpmv.c blas/ztpsv.c
blas/ztrmm.c blas/ztrmv.c blas/ztrsm.c blas/ztrsv.c)

set (LAPACK_SOURCES lapack/icmaxl.c lapack/ieeeck.c lapack/ilaenv.c
lapack/ilaver.c lapack/iparmg.c lapack/izmaxl.c lapack/lsamen.c

lapack/xerbla.c lapack/slamch.c

lapack/cbdsqgr.c lapack/cgbbrd.c lapack/cgbcon.c lapack/cgbequ.c lapack/cgbrfs.c
lapack/cgbsv.c

lapack/cgbsvx.c lapack/cgbtf2.c lapack/cgbtrf.c lapack/cgbtrs.c

lapack/cgebak.c lapack/cgebal.c lapack/cgebd2.c lapack/cgebrd.c

lapack/cgecon.c lapack/cgeequ.c lapack/cgees.c lapack/cgeesx.c

lapack/cgeev.c lapack/cgeevx.c lapack/cgegs.c lapack/cgegv.c

lapack/cgehd2.c lapack/cgehrd.c lapack/cgelg2.c lapack/cgelgf.c
lapack/cgelsd.c lapack/cgels.c lapack/cgelss.c lapack/cgelsx.c
lapack/cgelsy.c lapack/cgeql2.c lapack/cgeglf.c lapack/cgegp3.c
lapack/cgegpf.c lapack/cgeqr2.c lapack/cgeqrf.c lapack/cgerfs.c
lapack/cgerg2.c lapack/cgergf.c lapack/cgesc2.c lapack/cgesdd.c
lapack/cgesvd.c lapack/cgesv.c lapack/cgesvx.c lapack/cgetc2.c

10

lapack/cgetf2.c lapack/cgetrf.c lapack/cgetri.c lapack/cgetrs.c

lapack/cggbak.c lapack/cggbal.c lapack/cgges.c lapack/cggesx.c
lapack/cggev.c lapack/cggevx.c lapack/cggglm.c lapack/cgghrd.c
lapack/cgglse.
lapack/cggsvp.
lapack/cgtsvx.
lapack/chbevd.
lapack/chbgvd.
lapack/checon.
lapack/cheevx.

lapack/chesvx.c
lapack/chetrf.c
lapack/chpcon.c
lapack/chpgst.c
lapack/chprfs.c
lapack/chptrf.c
lapack/chseqgr.c
lapack/clacon.c
lapack/clacrt.c
lapack/claed8.c
lapack/clag2z.c
lapack/clahgr.c
lapack/clalsO.c
lapack/clange.c
lapack/clanhp.c
lapack/clansp.c
lapack/clantr.c
lapack/claqgge.c
Ne
@
@
@
@
@
@
@
@
e
@
@
@
@
e
@
e
E
e

lapack/clagp2

lapack/claqgr2.
lapack/clagsb.
lapack/clar2v.
lapack/clarfg.
lapack/clarnv.
lapack/clarzb.
lapack/claset.
lapack/clasyf.
lapack/clatrd.
lapack/clauu2.
lapack/cpbrfs.
lapack/cpbtf2.
lapack/cpoequ.
lapack/cpotf2.
lapack/cppcon.
lapack/cppsvx.
lapack/cptcon.
lapack/cptsvx.

lapack/crot.c

lapack/csprfs.c lapack/cspsv.c lapack/cspsvx.c lapack/csptrf.c

C
C
C
Cc
C
C
e}

lapack/cgggrf.c lapack/cggrgf.c lapack/cggsvd.c

lapack/cgtcon.c lapack/cgtrfs.c lapack/cgtsv.c

lapack/cgttrf.c lapack/cgttrs.c lapack/cgtts2.c

lapack/chbev.c lapack/chbevx.c lapack/chbgst.c
lapack/chbgv.c lapack/chbgvx.c lapack/chbtrd.c
lapack/cheevd.c lapack/cheev.c lapack/cheevr.c

lapack/chegs2.c lapack/chegst.c lapack/chegvd.c
lapack/chegv.c lapack/chegvx.c lapack/cherfs.c lapack/chesv.c
lapack/chetd2.c lapack/chetf2.c lapack/chetrd.c
lapack/chetri.c lapack/chetrs.c lapack/chgegz.c

lapack/chpevd.c lapack/chpev.c lapack/chpevx.c
lapack/chpgvd.c lapack/chpgv.c lapack/chpgvx.c
lapack/chpsv.c lapack/chpsvx.c lapack/chptrd.c
lapack/chptri.c
lapack/clabrd.c
lapack/clacp2.c
lapack/cladiv.c
lapack/claein.c
lapack/clags2.c
lapack/clahr2.c
lapack/clalsa.c
lapack/clangt.c
0@
@
@
@
€
@
€
@
€
@

lapack/clanhs

lapack/clansy.
lapack/clapll.
lapack/claghb.
lapack/clagps.
lapack/clagr3.
lapack/clagsp.
lapack/clarcm.
lapack/clarft.
lapack/clarrv.
lapack/clarz.c lapack/clarzt.c lapack/clascl.c
lapack/clasr.c lapack/classqg.c lapack/claswp.c

lapack/chptrs.c
lapack/clacgv.c
lapack/clacpy.c
lapack/claed0O.c
lapack/claesy.c
lapack/clagtm.c
lapack/clahrd.c
lapack/clalsd.c
lapack/clanhb.c
0@
@
@
€
€
@
@
@
@
@

lapack/clanht

lapack/clantb.
lapack/clapmt.
lapack/claghe.
lapack/clagr0.
lapack/claqrd.
lapack/clagsy.
lapack/clarfb.
lapack/clarfx.
lapack/clartg.

lapack/chsein.
lapack/clacn2.
lapack/clacrm.
lapack/claed7.
lapack/claev2.
lapack/clahef.
lapack/claicl.
lapack/clangb.
lapack/clanhe.
lapack/clansb.
lapack/clantp.
lapack/claqggb.
lapack/claghp.
lapack/claqgrl.
lapack/clagr5.
lapack/clarlv.
lapack/clarf.c
lapack/clargv.
lapack/clartv.

OO0 0000000000000

C
[e]

lapack/clatbs.c lapack/clatdf.c lapack/clatps.c
lapack/clatrz.c lapack/clatzm.c
lapack/cpbcon.c lapack/cpbequ.c

lapack/clatrs

lapack/cspcon.c

0@
lapack/clauum.
lapack/cpbstf.
lapack/cpbtrf.
lapack/cporfs.
lapack/cpotrf.
lapack/cppequ.
lapack/cpptrf.
lapack/cpteqr.
lapack/cpttrf.

(e
C
[e]
C
[
C
C
C
C

lapack/cpbsv.c lapack/cpbsvx.c

lapack/cpbtrs.c lapack/cpocon.c

lapack/cposv.c lapack/cposvx.c
lapack/cpotri.c
lapack/cpprfs.c

0@
lapack/cptrfs.c
lapack/cpttrs.

lapack/cpptri

(]

lapack/cpotrs.
lapack/cppsv.c
lapack/cpptrs.
lapack/cptsv.c
lapack/cptts2.

lapack/cspmv.c lapack/cspr.c

@

©]

(e

lapack/csptri.c lapack/csptrs.c lapack/csrscl.c lapack/cstedc.c
lapack/cstegr.c lapack/cstein.c lapack/cstemr.c lapack/csteqgr.c
lapack/csycon.c lapack/csymv.c lapack/csyr.c lapack/csyrfs.c

lapack/csysv.c lapack/csysvx.c lapack/csytf2.c lapack/csytrf.c
lapack/csytrs.c lapack/ctbcon.c lapack/ctbrfs.
lapack/ctgexc.
lapack/ctgsy2.
lapack/ctptri.
lapack/ctrexc.
lapack/ctrsyl.
lapack/ctzrqgf.
lapack/cungbr.
lapack/cungql.
lapack/cungtr.
lapack/cunmhr.
lapack/cunmgr.
lapack/cunmrz.
lapack/sbdsdc.

lapack/csytri.
lapack/ctbtrs.
lapack/ctgsen.
lapack/ctgsyl.
lapack/ctptrs.
lapack/ctrrfs.
lapack/ctrti2.
lapack/ctzrzf.
lapack/cunghr.
lapack/cunggr.
lapack/cunm2l.
lapack/cunml2.
lapack/cunmr2.
lapack/cunmtr.

C
(e}
C
(e]
C
(e}
C
C
c
C
(e]
C
(o]
C

lapack/ctgevc.
lapack/ctgsja.c
lapack/ctpcon.c
lapack/ctrcon.c
lapack/ctrsen.c
lapack/ctrtri.c
lapack/cung2l.c
-@
e
@
€
e
€

lapack/cungl2

lapack/cungr2.
lapack/cunm2r.
lapack/cunmlq.
lapack/cunmr3.
lapack/cupgtr.

©

lapack/ctgex2.
lapack/ctgsna.c
lapack/ctprfs.c
lapack/ctrevc.c
lapack/ctrsna.c
lapack/ctrtrs.c
lapack/cung2r.c
- @
e
€
€
€
€

lapack/cunglqg

lapack/cungrqg.
lapack/cunmbr.
lapack/cunmqgl.
lapack/cunmrq.
lapack/cupmtr.

©

11

Q0000000000000

(¢

[¢]
C

G

C
[e]
C

C
(o]
[¢]

[¢]
C

0.

C

Q0000000

Q0 Q0

Q Q0 Q

lapack/sbdsgr.c lapack/scsuml.c lapack/sdisna.c lapack/sgbbrd.
lapack/sgbcon.c lapack/sgbequ.c lapack/sgbrfs.c lapack/sgbsv.c
lapack/sgbsvx.c lapack/sgbtf2.c lapack/sgbtrf.c lapack/sgbtrs.
lapack/sgebak.c lapack/sgebal.c lapack/sgebd2.c lapack/sgebrd.
lapack/sgecon.c lapack/sgeequ.c lapack/sgees.c lapack/sgeesx.c
lapack/sgeev.c lapack/sgeevx.c lapack/sgegs.c lapack/sgegv.c
lapack/sgehd2.c lapack/sgehrd.c lapack/sgelg2.c lapack/sgelgf.c
lapack/sgelsd.c lapack/sgels.c lapack/sgelss.c lapack/sgelsx.c
lapack/sgelsy.c lapack/sgegl2.c lapack/sgeglf.c lapack/sgegp3.c
lapack/sgegpf.c lapack/sgeqr2.c lapack/sgeqrf.c lapack/sgerfs.c
lapack/sgerg2.c lapack/sgergf.c lapack/sgesc2.c lapack/sgesdd.c
lapack/sgesvd.c lapack/sgesv.c lapack/sgesvx.c lapack/sgetc2.c
lapack/sgetf2.c lapack/sgetrf.c lapack/sgetri.c lapack/sgetrs.c
lapack/sggbak.c lapack/sggbal.c lapack/sgges.c lapack/sggesx.c
lapack/sggev.c lapack/sggevx.c lapack/sggglm.c lapack/sgghrd.c
lapack/sgglse.c lapack/sgggrf.c lapack/sggrgf.c lapack/sggsvd.
lapack/sggsvp.c lapack/sgtcon.c lapack/sgtrfs.c lapack/sgtsv.c
lapack/sgtsvx.c lapack/sgttrf.c lapack/sgttrs.c lapack/sgtts2.
lapack/shgeqgz.c lapack/shsein.c lapack/shseqr.c lapack/sisnan.
lapack/slabad.c lapack/slabrd.c lapack/slacn2.c lapack/slacon.
lapack/slacpy.c lapack/sladiv.c lapack/slae2.c lapack/slaebz.c
lapack/slaed0.c lapack/slaedl.c lapack/slaed2.c lapack/slaed3.
lapack/slaed4.c lapack/slaed5.c lapack/slaed6.c lapack/slaed7.
lapack/slaed8.c lapack/slaed9.c lapack/slaeda.c lapack/slaein.
lapack/slaev2.c lapack/slaexc.c lapack/slag2d.c lapack/slag2.c
lapack/slags2.c lapack/slagtf.c lapack/slagtm.c lapack/slagts.
lapack/slagv2.c lapack/slahgr.c lapack/slahr2.c lapack/slahrd.
lapack/slaicl.c lapack/slaisnan.c lapack/slaln2.c lapack/slals
lapack/slalsa.c lapack/slalsd.c lapack/slamrg.c lapack/slaneg.
lapack/slangb.c lapack/slange.c lapack/slangt.c lapack/slanhs.
lapack/slansb.c lapack/slansp.c lapack/slanst.c lapack/slansy.
lapack/slantb.c lapack/slantp.c lapack/slantr.c lapack/slanv2.
lapack/slapll.c lapack/slapmt.c lapack/slapy2.c lapack/slapy3.
lapack/slaggb.c lapack/slagge.c lapack/slagp2.c lapack/slagps.
lapack/slaqrO.c lapack/slagrl.c lapack/slagr2.c lapack/slaqr3.
lapack/slagré4.c lapack/slagr5.c lapack/slagsb.c lapack/slagsp.
lapack/slagsy.c lapack/slagtr.c lapack/slarlv.c lapack/slar2v.
lapack/slarfb.c lapack/slarf.c lapack/slarfg.c lapack/slarft.c
lapack/slarfx.c lapack/slargv.c lapack/slarnv.c lapack/slarra.
lapack/slarrb.c lapack/slarrc.c lapack/slarrd.c lapack/slarre.
lapack/slarrf.c lapack/slarrj.c lapack/slarrk.c lapack/slarrr.
lapack/slarrv.c lapack/slartg.c lapack/slartv.c lapack/slaruv.
lapack/slarzb.c lapack/slarz.c lapack/slarzt.c lapack/slas2.c
lapack/slascl.c lapack/slasdO.c lapack/slasdl.c lapack/slasd2.
lapack/slasd3.c lapack/slasd4.c lapack/slasd5.c lapack/slasdé6.
lapack/slasd7.c lapack/slasd8.c lapack/slasda.c lapack/slasdq.
lapack/slasdt.c lapack/slaset.c lapack/slasqgl.c lapack/slasg2.
lapack/slasg3.c lapack/slasqg4.c lapack/slasg5.c lapack/slasg6.
lapack/slasr.c lapack/slasrt.c lapack/slassqg.c lapack/slasv2.c
lapack/slaswp.c lapack/slasy2.c lapack/slasyf.c lapack/slatbs.
lapack/slatdf.c lapack/slatps.c lapack/slatrd.c lapack/slatrs.
lapack/slatrz.c lapack/slatzm.c lapack/slauu2.c lapack/slauum.
lapack/slazg3.c lapack/slazg4.c lapack/sopgtr.c lapack/sopmtr.
lapack/sorg2l.c lapack/sorg2r.c lapack/sorgbr.c lapack/sorghr.
lapack/sorgl2.c lapack/sorglqg.c lapack/sorggl.c lapack/sorggr.
lapack/sorgr2.c lapack/sorgrqg.c lapack/sorgtr.c lapack/sorm2l.
lapack/sorm2r.c lapack/sormbr.c lapack/sormhr.c lapack/sorml2.
lapack/sormlqg.c lapack/sormgl.c lapack/sormgr.c lapack/sormr2.
lapack/sormr3.c lapack/sormrqg.c lapack/sormrz.c lapack/sormtr.
lapack/spbcon.c lapack/spbequ.c lapack/spbrfs.c lapack/spbstf.

lapack/spbsv.c lapack/spbsvx.c lapack/spbtf2.c lapack/spbtrf.c
lapack/spbtrs.c lapack/spocon.c lapack/spoequ.c lapack/sporfs.c
lapack/sposv.c lapack/sposvx.c lapack/spotf2.c lapack/spotrf.c
lapack/spotrs.c lapack/sppcon.c lapack/sppequ.c
lapack/sppsv.c lapack/sppsvx.c lapack/spptrf.c
lapack/spptrs.c lapack/sptcon.c lapack/spteqgr.c
lapack/sptsv.c lapack/sptsvx.c lapack/spttrf.c
lapack/sptts2.c lapack/srscl.c lapack/ssbevd.c

lapack/spotri.
lapack/spprfs.
lapack/spptri.
lapack/sptrfs.
lapack/spttrs.

C
(e]
C
(o]
C

12

Q000000000

lapack/ssbev.c lapack/ssbevx.
lapack/ssbgv.c lapack/ssbgvx.
lapack/sspevd.c lapack/sspev
lapack/sspgvd.c lapack/sspgv.
lapack/sspsv.c lapack/sspsvx.

lapack/ssptri.
lapack/sstegr.
lapack/ssterf.
lapack/sstevx.
lapack/ssyevr.
lapack/ssygvd.

lapack/ssytrd.
lapack/stbcon.
lapack/stgex2.
lapack/stgsna.
lapack/stprfs.
lapack/strevc.
lapack/strsna.
lapack/strtrs.
lapack/dbdsdc.
lapack/dgbcon.
lapack/dgbsvx.
lapack/dgebak.
lapack/dgecon.

lapack/dgehd2.
lapack/dgelsd.
lapack/dgelsy.
lapack/dgegpf.
lapack/dgerg2.
lapack/dgesvd.
lapack/dgetf2.
lapack/dggbak.

lapack/dgglse.
lapack/dggsvp.
lapack/dgtsvx.
lapack/dhgeqz.
lapack/dlabad.
lapack/dlacpy.
lapack/dlaed0.
lapack/dlaed4.
lapack/dlaed8.
lapack/dlaev2.
lapack/dlags2.
lapack/dlagv2.
lapack/dlaicl.
lapack/dlalsa.
lapack/dlangb.
lapack/dlansb.
lapack/dlantb.
lapack/dlapll.
lapack/dlaggb.
lapack/dlaqgr0.
lapack/dlaqgr4.
lapack/dlagsy.
lapack/dlarfb.
lapack/dlarfx.
lapack/dlarrb.
lapack/dlarrf.
lapack/dlarrv.
lapack/dlarzb.
lapack/dlascl.
lapack/dlasd3.
lapack/dlasd7.
lapack/dlasdt.
lapack/dlasg3.

C
Cc
C
C
e}
C
C
C
C
C
(e}
Cc
e}
C
C
C
C
(e}
C

C
(o]
C
C
C
C
(e}
C

C
C
C
C
(e}
C
(e]
C
(o]
C
C
c
C
(e}
C
(o]
C
C
C
C
(e}
C
(e]
C
(e}
C
C
c
C
(e]
C
(o]
C

lapack/ssptrs
lapack/sstein
lapack/sstevd
lapack/ssycon
lapack/ssyevx

lapack/ssytrf.c
lapack/stbrfs.c
lapack/stgexc.c
lapack/stgsy2.c
lapack/stptri.c
lapack/strexc.c
0@
@
€
@
@
@
@

lapack/strsyl

lapack/stzrgf.
lapack/dbdsqgr.
lapack/dgbequ.
lapack/dgbtf2.
lapack/dgebal.
lapack/dgeequ.

lapack/dgttrf.c
lapack/dhsein.c
lapack/dlabrd.c
lapack/dladiv.c
lapack/dlaedl.c
NG
€
@
€
@

lapack/dlaed5

lapack/dlaed9.
lapack/dlaexc.
lapack/dlagtf.
lapack/dlahgr.
lapack/dlaisnan.
lapack/dlalsd.c
lapack/dlange.c
lapack/dlansp.c
lapack/dlantp.c
0@

@

e

@

€

lapack/dlapmt

lapack/dlaqgge.
lapack/dlagrl.
lapack/dlagr5.
lapack/dlagtr.

lapack/dlasd0.c
lapack/dlasd4.c
@
e
€

lapack/dlasd8

lapack/dlaset.
lapack/dlasg4.

C
C
.C
C
C

C
C
C
C
o]

©

lapack/ssbgst.
lapack/ssbtrd.
lapack/sspevx
lapack/sspgvx.
lapack/ssptrd.

(o]
(o]
.C
C
[¢]

lapack/ssbgvd.
lapack/sspcon.
lapack/sspgst.
lapack/ssprfs.
lapack/ssptrf.

Q0 Q0aQ0

lapack/sstebz.c lapack/sstedc.c
lapack/sstemr.c lapack/ssteqr.c
lapack/sstev.c lapack/sstevr.c
lapack/ssyevd.c lapack/ssyev.c
lapack/ssygs2.c lapack/ssygst.c
lapack/ssygv.c lapack/ssygvx.c lapack/ssyrfs.c
lapack/ssysv.c lapack/ssysvx.c lapack/ssytd2.c lapack/ssytf2.c

lapack/ssytri.c
lapack/stbtrs.c
lapack/stgsen.c
lapack/stgsyl.c
lapack/stptrs.c
0@
@
@
€
€
@
@

lapack/strrfs

lapack/strti2.
lapack/stzrzf.
lapack/ddisna.
lapack/dgbrfs.
lapack/dgbtrf.
lapack/dgebd2.

lapack/ssytrs.
lapack/stgevc.
lapack/stgsja.
lapack/stpcon.
lapack/strcon.
lapack/strsen.
lapack/strtri.
lapack/dlamch.
lapack/dgbbrd.
lapack/dgbsv.c
lapack/dgbtrs.
lapack/dgebrd.

lapack/dgees.c lapack/dgeesx.c
lapack/dgeev.c lapack/dgeevx.c lapack/dgegs.c lapack/dgegv.c

lapack/dgehrd.c lapack/dgelg2.c lapack/dgelgf.c
lapack/dgels.c lapack/dgelss.c lapack/dgelsx.c
lapack/dgeqgl2.c lapack/dgeqglf.c lapack/dgegp3.c
lapack/dgeqr2.c lapack/dgeqrf.c lapack/dgerfs.c
lapack/dgerqgf.c lapack/dgesc2.c lapack/dgesdd.c
lapack/dgesv.c lapack/dgesvx.c lapack/dgetc2.c
lapack/dgetrf.c lapack/dgetri.c lapack/dgetrs.c
lapack/dggbal.c lapack/dgges.c lapack/dggesx.c
lapack/dggev.c lapack/dggevx.c lapack/dggglm.c lapack/dgghrd.c
lapack/dgggrf.c lapack/dggrgf.c lapack/dggsvd.c
lapack/dgtcon.

lapack/dgtrfs

0@
lapack/dgttrs.
lapack/dhseqr.
lapack/dlacn2.
lapack/dlae2.c lapack/dlaebz.c
lapack/dlaed2.c lapack/dlaed3.c
lapack/dlaed6.c lapack/dlaed7.c
lapack/dlaeda.c lapack/dlaein.c
lapack/dlag2.c lapack/dlag2s.c
lapack/dlagtm.c
lapack/dlahr2.c

lapack/dlamrg.
lapack/dlangt.
lapack/dlanst.
lapack/dlantr.
lapack/dlapy2.
lapack/dlagp2.
lapack/dlagr2.
lapack/dlagsb.
lapack/dlarlv.
lapack/dlarf.c lapack/dlarfg.c lapack/dlarft.c
lapack/dlargv.c lapack/dlarnv.c lapack/dlarra.
lapack/dlarrc.c lapack/dlarrd.c lapack/dlarre.
lapack/dlarrj.c lapack/dlarrk.c lapack/dlarrr.
lapack/dlartg.c lapack/dlartv.c lapack/dlaruv.
lapack/dlarz.c lapack/dlarzt.c lapack/dlas2.c
lapack/dlasdl.
lapack/dlasd5.
lapack/dlasda.
lapack/dlasqgl.
lapack/dlasg5.

C
[e]
[e]

c lapack/dlaln2

@

C
[e]
C
[e]
C
C
(¢]
C

C
(e]
C
[e]
C

13

lapack/dgtsv.c
lapack/dgtts2.
lapack/disnan.
lapack/dlacon.

lapack/dlagts.
lapack/dlahrd.

.c lapack/dlals

lapack/dlaneg.
lapack/dlanhs.
lapack/dlansy.
lapack/dlanv2.
lapack/dlapy3.
lapack/dlagps.
lapack/dlaqgr3.
lapack/dlagsp.
lapack/dlar2v.

lapack/dlasd2.
lapack/dlasd6.
lapack/dlasdq.
lapack/dlasqg2.
lapack/dlasg6.

Q00000000

©
©

C
C
(¢]

@
©
0.
@

Q Qa0 Q0 00a0aa0a

Q Qa0

lapack/dlasr.c lapack/dlasrt.c lapack/dlassqg.c lapack/dlasv2.c
lapack/dlatbs.
lapack/dlatrs.
lapack/dlauum.
lapack/dopmtr.
lapack/dorghr.
lapack/dorggr.
lapack/dorm21.
lapack/dorml2.
lapack/dormr2.
lapack/dormtr.
lapack/dpbstf.

lapack/dlaswp.
lapack/dlatdf.
lapack/dlatrz.
lapack/dlazg3.
lapack/dorg2l.
lapack/dorgl2.
lapack/dorgr2.
lapack/dorm2r.
lapack/dormlqg.
lapack/dormr3.
lapack/dpbcon.

lapack/dpotri.
lapack/dpprfs.
lapack/dpptri.
lapack/dptrfs.
lapack/dpttrs.
lapack/dsbev.c lapack/dsbevx.c lapack/dsbgst.
lapack/dsbgv.c lapack/dsbgvx.c lapack/dsbtrd
lapack/dspevd.c lapack/dspev.
lapack/dspgvd.c lapack/dspgv.
lapack/dspsv.c lapack/dspsvx.

lapack/dspcon.
lapack/dspgst.
lapack/dsprfs.
lapack/dsptrf.
lapack/dstedc.
lapack/dsteqr.
lapack/dstevr.

lapack/dsygst.
lapack/dsyrfs.
lapack/dsytf2.
lapack/dsytrs.
lapack/dtgevc.
lapack/dtgsja.
lapack/dtpcon.
lapack/dtrcon.
lapack/dtrsen.
lapack/dtrtri.
lapack/dzsuml.
lapack/zgbbrd.

C
o}
C
C
C
Cc
C
C
e}
C
C
C
(e}
Cc
e}
C
C
(e}
C
e}
C
(o]
C

C
C
(e}
C
(o]
C
C
C
C
(e}
C

©

lapack/dlasy2.
lapack/dlatps.
lapack/dlatzm.
lapack/dlazqg4.
lapack/dorg2r.
lapack/dorglqg.
lapack/dorgrqg.
lapack/dormbr.
lapack/dormgl.
lapack/dormrq.
lapack/dpbequ.

lapack/dptsv.c lapack/dptsvx.
lapack/dptts2.c lapack/drscl.

C
[e]
C
e
C
C
C
C
o]
C
[e]

lapack/dlasyf.
lapack/dlatrd.
lapack/dlauu2.
lapack/dopgtr.
lapack/dorgbr.
lapack/dorgqgl.
lapack/dorgtr.
lapack/dormhr.
lapack/dormgr.
lapack/dormrz.
lapack/dpbrfs.
lapack/dpbsv.c lapack/dpbsvx.c lapack/dpbtf2.c lapack/dpbtrf.c
lapack/dpbtrs.c lapack/dpocon.c lapack/dpoequ.c lapack/dporfs.c
lapack/dposv.c lapack/dposvx.c lapack/dpotf2.c lapack/dpotrf.c
lapack/dpotrs.c lapack/dppcon.c lapack/dppequ.c
lapack/dppsv.c lapack/dppsvx.c lapack/dpptrf.c
lapack/dpptrs.c lapack/dptcon.c lapack/dptegr.c

[e]
C
[e]
.C
(o]
(o]
(o]

(o]
[¢]
C
[e]
C
[e]
C
[e]
[¢]
C
[e]

lapack/dpttrf.
lapack/dsbevd.
lapack/dsbgvd.
lapack/dsgesv.
lapack/dspevx.
lapack/dspgvx.
lapack/dsptrd.

QOQ 00000

OO0 000000000

lapack/dsptri.c lapack/dsptrs.c lapack/dstebz.c
lapack/dstegr.c lapack/dstein.c lapack/dstemr.c
lapack/dsterf.c lapack/dstevd.c lapack/dstev.c
lapack/dstevx.c lapack/dsycon.c lapack/dsyevd.c
lapack/dsyev.c lapack/dsyevr.c lapack/dsyevx.c lapack/dsygs2.c
lapack/dsygvd.c lapack/dsygv.c lapack/dsygvx.c
lapack/dsysv.c lapack/dsysvx.c lapack/dsytd2.c
lapack/dsytri.
lapack/dtbtrs.
lapack/dtgsen.
lapack/dtgsyl.
lapack/dtptrs.
lapack/dtrrfs.
lapack/dtrti2.
lapack/dtzrzf.
lapack/zdrscl.
lapack/zgbrfs.

lapack/dsytrd.
lapack/dtbcon.
lapack/dtgex2.
lapack/dtgsna.
lapack/dtprfs.
lapack/dtrevc.
lapack/dtrsna.
lapack/dtrtrs.
lapack/zbdsqgr.
lapack/zgbcon.

lapack/zgbsv.clapack/zgbsvx.c
lapack/zgbtrs.c lapack/zgebak.c lapack/zgebal.c lapack/zgebd2
lapack/zgebrd.c lapack/zgecon.c lapack/zgeequ.c lapack/zgees.c
lapack/zgeesx.c lapack/zgeev.c lapack/zgeevx.c lapack/zgegs.c
lapack/zgegv.c lapack/zgehd2.c lapack/zgehrd.c lapack/zgelg2.c
lapack/zgels.c lapack/zgelss.c lapack/zgelsx.c
lapack/zgeqglf.c lapack/zgegp3.c lapack/zgegpf.c
lapack/zgerfs.c lapack/zgerg2.c lapack/zgergf.c
lapack/zgesvd.c lapack/zgesv.c lapack/zgesvx.c
lapack/zgetrf.c lapack/zgetri.c lapack/zgetrs.c
lapack/zgges.c lapack/zggesx.c lapack/zggev.c

lapack/zgghrd.c lapack/zgglse.c lapack/zgggrf.c
lapack/zggsvp.c lapack/zgtcon.c lapack/zgtrfs.c

lapack/zgelqgf.
lapack/zgelsy.
lapack/zgeqr2.
lapack/zgesc2.
lapack/zgetc2.
lapack/zggbak.
lapack/zggevx.
lapack/zggrgf.
lapack/zgtsv.c lapack/zgtsvx
lapack/zhbevd.c lapack/zhbev
lapack/zhbgv.c lapack/zhbgvx
lapack/zheev.c lapack/zheevr
lapack/zhegvd.c lapack/zhegv

C
(e}
C
(o]
C
C
C
C

lapack/zgelsd.
lapack/zgeql2.
lapack/zgeqgrf.
lapack/zgesdd.
lapack/zgetf2.
lapack/zggbal.
lapack/zggglm.
lapack/zggsvd.

.C
.C
.C
.C
.C

[e]
C
C
C
C
C
C
(e
C
[e]

1

C
[e]
C
(]
C
C
C
C

lapack/dsytrf.c
lapack/dtbrfs.c
lapack/dtgexc.c
lapack/dtgsy2.c
0@
€
€
@
€

lapack/dtptri

lapack/dtrexc.
lapack/dtrsyl.
lapack/dtzrgf.
lapack/zcgesv.

lapack/zgbequ.

apack/zgbtf2.c

lapack/zgttrf.
lapack/zhbevx.
lapack/zhbtrd.
lapack/zheevx.
lapack/zhegvx.

[e]
C
[e]
C
[e]

c
1

apack/zgbtrf.c

lapack/zgttrs.
lapack/zhbgst.
lapack/zhecon.
lapack/zhegs2.
lapack/zherfs.

Q000000000

.C

C
C
(e]
C
©

lapack/zgtts2.c
lapack/zhbgvd.c
lapack/zheevd.c
lapack/zhegst.c
lapack/zhesv.c

lapack/zhesvx.c lapack/zhetd2.c lapack/zhetf2.c lapack/zhetrd.c lapack/zhetrf.c
lapack/zhetri.c lapack/zhetrs.c lapack/zhgeqz.c lapack/zhpcon.c lapack/zhpevd.c
lapack/zhpev.c lapack/zhpevx.c lapack/zhpgst.c lapack/zhpgvd.c lapack/zhpgv.c

lapack/zhpsv.c lapack/zhpsvx.c lapack/zhptrd.c
lapack/zhsein.
lapack/zlacon.
lapack/zladiv.
lapack/zlaesy.

lapack/zhpgvx.
lapack/zhptrf.
lapack/zlabrd.
lapack/zlacpy.
lapack/zlaed7.

C
(e]
C
(o]
C

lapack/zhprfs.
lapack/zhptri.
lapack/zlacgv.
lapack/zlacrm.
lapack/zlaed8.

C
[e]
C
C
C

lapack/zhptrs
lapack/zlacn2
lapack/zlacrt
lapack/zlaein

(e]
C
[e]
C

14

(e]
C
(e]
C

lapack/zhseqr.
lapack/zlacp2.
lapack/zlaed0.
lapack/zlaev2.

Q Q

lapack/zlag2c.
lapack/zlahr2.
lapack/zlalsd.
lapack/zlanhe.
lapack/zlansp.
lapack/zlapll.
lapack/zlaghe.
lapack/zlaqgrl.
lapack/zlagsb.
lapack/zlarcm.
lapack/zlarfx.
lapack/zlartv.
lapack/zlaset.
lapack/zlatbs.
lapack/zlatrz.
lapack/zpbequ.
lapack/zpbtf2.
lapack/zporfs.
lapack/zpotri.

lapack/zstein.c lapack/zstemr.c lapack/zsteqr.c lapack/zsycon.c lapack/zsymv.c

lapack/zsyr.c

lapack/zsytrf.
lapack/ztbtrs.
lapack/ztgsja.
lapack/ztprfs.
lapack/ztrexc.
lapack/ztrti2
lapack/zung2l.
lapack/zunglqg.
lapack/zungtr.
lapack/zunml2.
lapack/zunmr3.
lapack/zupmtr.

(o]
C
(e}
C
.C
(e}
C
(o]
C

OO0 0000000000000

lapack/zlags2.
lapack/zlahrd.
lapack/zlangb.
lapack/zlanhp.
lapack/zlansy.
lapack/zlapmt.
lapack/zlaghp.
lapack/zlaqgr2.
lapack/zlagsp.
lapack/zlarfb.
lapack/zlargv.
lapack/zlarzb.

o]
C
[e]
C
C
C
C
(o]
C
[¢]
C
[e]

lapack/zlagtm.c lapack/zlahef.c lapack/zlahgr.c
lapack/zlaicl.c lapack/zlalsO.c lapack/zlalsa.c
lapack/zlange.c lapack/zlangt.c lapack/zlanhb.c
lapack/zlanhs.c lapack/zlanht.c lapack/zlansb.c
lapack/zlantb.c lapack/zlantp.c lapack/zlantr.c
lapack/zlagqgb.c lapack/zlagge.c lapack/zlaghb.c
lapack/zlagp2.c lapack/zlagps.c lapack/zlaqgr0.c
lapack/zlaqr3.c lapack/zlaqgr4.c lapack/zlaqr5.c
lapack/zlagsy.c lapack/zlarlv.c lapack/zlar2v.c

lapack/zlarf.c lapack/zlarfg.c lapack/zlarft.c
lapack/zlarnv.c lapack/zlarrv.c lapack/zlartg.c
lapack/zlarz.c lapack/zlarzt.c lapack/zlascl.c

lapack/zlasr.c lapack/zlassq.c lapack/zlaswp.c lapack/zlasyf.c
lapack/zlatdf.c lapack/zlatps.c lapack/zlatrd.c lapack/zlatrs.c
lapack/zlatzm.c lapack/zlauu2.c lapack/zlauum.c lapack/zpbcon.c
lapack/zpbrfs.c lapack/zpbstf.c lapack/zpbsv.c lapack/zpbsvx.c
lapack/zpbtrf.c lapack/zpbtrs.c lapack/zpocon.c lapack/zpoequ.c
lapack/zposv.c lapack/zposvx.c lapack/zpotf2.c lapack/zpotrf.c
lapack/zpotrs.c lapack/zppcon.c lapack/zppequ.c lapack/zpprfs.c
lapack/zppsv.c lapack/zppsvx.c lapack/zpptrf.c lapack/zpptri.c lapack/zpptrs.c
lapack/zptcon.c lapack/zpteqr.c lapack/zptrfs.c lapack/zptsv.c lapack/zptsvx.c
lapack/zpttrf.c lapack/zpttrs.c lapack/zptts2.c lapack/zrot.c lapack/zspcon.c
lapack/zspmv.c lapack/zspr.c lapack/zsprfs.c lapack/zspsv.c lapack/zspsvx.c

lapack/zsptrf.c lapack/zsptri.c lapack/zsptrs.c lapack/zstedc.c lapack/zstegr.c

lapack/zsyrfs.c

c

]
c)

lapack/zsytri.
lapack/ztgevc.c
lapack/ztgsna.c
lapack/ztptri.c
lapack/ztrrfs.c
@
€
€
€
€
€

lapack/ztrtri

lapack/zung2r.
lapack/zunggl.
lapack/zunm2l.
lapack/zunmlqg.
lapack/zunmrq.

lapack/zsysv.c lapack/zsysvx.c lapack/zsytf2.c

(o]

lapack/zsytrs.c lapack/ztbcon.c lapack/ztbrfs.c
lapack/ztgex2.c lapack/ztgexc.c lapack/ztgsen.c
lapack/ztgsy2.c lapack/ztgsyl.c lapack/ztpcon.c
lapack/ztptrs.c lapack/ztrcon.c lapack/ztrevc.c
lapack/ztrsen.c lapack/ztrsna.c lapack/ztrsyl.c
lapack/ztrtrs.c lapack/ztzrgf.c lapack/ztzrzf.c
lapack/zungbr.c lapack/zunghr.c lapack/zungl2.c
lapack/zungqgr.c lapack/zungr2.c lapack/zungrqg.c
lapack/zunm2r.c lapack/zunmbr.c lapack/zunmhr.c
lapack/zunmgl.c lapack/zunmgr.c lapack/zunmr2.c
lapack/zunmrz.c lapack/zunmtr.c lapack/zupgtr.c

add_library (f2cblas STATIC ${BLAS_SOURCES})

include_directories (BEFORE ${CMAKE_CURRENT_SOURCE_DIR}/lapack)

directory so it is searched first
add_library (f2clapack STATIC ${LAPACK_SOURCES})
install (TARGETS f2cblas f2clapack DESTINATION 1lib)

5 Building HDFS with Parallel Enabled

The building of HDFS5 is mainly straightforward. The main thing to keep in mind is to remember to enable
Parallel support, which requires an MPI implementation, which should be easily found during the configuration
process. Also, remember to set compile flags to match the Chaste build flags. For example HDFS5 will build a
shared library by default, which will not work with a statically-linked Chaste. To manually build a statically-
linked version of HDFS5, select the ” Advanced” option checkbox in the cmake GUI and search for "flags”, then
locate and replace the /MDd in CMAKE_CXX_FLAGS_DEBUG with /MTd to ensure that a statically-linked
(as opposed to dynamically-linked) binary is generated, also add /Z7 to ensure that the debug information is
stored in the library and not in an external database. Do the same for CMAKE_C_FLAGS_DEBUG. Finally,
for CMAKE_CXX_FLAGS_RELEASE and CMAKE_C_FLAGS_RELEASE change /MD to /MTd

To prevent a linker warning: “HS5FDdirect.obj : warning LNK4221: This object file does not define
any previously undefined public symbols, so it will not be used by any link operation that consumes this
library”, select the ”Advanced” option in the cmake GUI and type cxx in the search bar to locate the vari-
able CMAKE_CXX_FLAGS_DEBUG and add /Yu to the end of the flag. Of course all these are done by

ChasteThirdPartyLibBuilder.

15

#prepend this

O 00O N A W=

47
48
49
50
51
52
53

6 Building METIS

The important thing to note is that METIS does not automatically install its built libraries and headers and must

be manually enabled to do so. Also, when building METIS for 64-bit architectures, the option METIS_USE_LONGINDEX
must be set to TRUE, this is done automatically by ChasteThirdPartyLibBuilder as can be seen on line 32,

where it is building METIS as an external project. For the automatic installation of METIS, the variable
METIS_INSTALL must be set to TRUE as can be seen on line 9 below, where ChasteThirdPartyLibBuilder

patches the CMakeLists.txt build file of METIS and also sets a bunch of other flags.

Building METIS

#Patch METIS CMakeLists.txt
file (READ "${DOWNLOAD_DIR}/metis/${metis_basicname}/CMakeLists.txt" metiscmake)
#check whether we have patched this already
string (FIND "${metiscmake}" "S${patch_message}" patched)
if (patched EQUAL -1) #not patched yet
string (REPLACE "project (METIS)" "project (METIS)
set (METIS_INSTALL TRUE CACHE BOOL \"Enable the independent install of
METIS\")
add_definitions (-MTd) #static debug build
add_definitions (-27) #embed debugging info in library as opposed to using an
external
.pdb database
include_directories (\"\${CMAKE_BINARY_DIR}/include\")"
metiscmake "${metiscmakel}l")
string (REGEX REPLACE "if[Jx[(][1*MSVC[1*[)].xendif[1x[(J[")1*x[)]1"
"include_directories (\${GKLIB_PATH}/include)"
metiscmake "${metiscmake}")

file (WRITE "${DOWNLOAD_DIR}/metis/${metis_basicname}/CMakeLists.txt"
"S{patch_message}${metiscmake}\nadd_subdirectory (\"GK1ib\")")
endif () #check whether patched

#Build METIS as an enternal project dependency
externalproject_add (METIS_${metis_basicname}
SOURCE_DIR ${DOWNLOAD_DIR}/metis/${metis_basicname}
CMAKE_GENERATOR ${CMAKE_GENERATOR}
CMAKE_ARGS
—DCMAKE_INSTALL_PREFIX:PATH=${CMAKE_INSTALL_PREFIX}/metis_${metis_basicname}
—DMETIS_INSTALL:BOOL=TRUE
—DMETIS_USE_LONGINDEX:BOOL=TRUE
—-DCMAKE_BUILD_TYPE:STRING=$ {CMAKE_BUILD_TYPE}
-DCMAKE_C_COMPILER:FILEPATH=S${CMAKE_C_COMPILER}
~DCMAKE_C_FLAGS : STRING=$ { CMAKE_C_FLAGS}
-DCMAKE_C_FLAGS_DEBUG: STRING=$ {CMAKE_C_FLAGS_DEBUG}
—-DCMAKE_C_FLAGS_MINSIZEREL:STRING=S{CMAKE_C_FLAGS_MINSIZEREL}
~-DCMAKE_C_FLAGS_RELEASE : STRING=$ {CMAKE_C_FLAGS_RELEASE}
—-DCMAKE_C_FLAGS_RELWITHDEBINFO:STRING=S$ {CMAKE_C_FLAGS_RELWITHDEBINFO}
—DCMAKE_CXX_FLAGS: STRING=S$ { CMAKE_CXX_FLAGS}
-DCMAKE_CXX_FLAGS_DEBUG:STRING=S$ { CMAKE_CXX_FLAGS_DEBUG}
—DCMAKE_CXX_FLAGS_MINSIZEREL:STRING=$ {CMAKE_CXX_FLAGS_MINSIZEREL}
—DCMAKE_CXX_FLAGS_RELEASE: STRING=S$ { CMAKE_CXX_FLAGS_RELEASE}
—-DCMAKE_CXX_FLAGS_RELWITHDEBINFO:STRING=S$ {CMAKE_CXX_FLAGS_RELWITHDEBINFO}
—DCMAKE_CXX_COMPILER:FILEPATH=${CMAKE_CXX_COMPILER}
—DCMAKE_EXE_LINKER_FLAGS:STRING=S {CMAKE_EXE_LINKER_FLAGS}
BINARY_DIR ${CMAKE_BINARY_DIR}/metis_${metis_basicname}
INSTALL_DIR ${CMAKE_INSTALL_PREFIX}/metis_S${metis_basicname}
)
set (OUTPUT_LIB_DIR "${OUTPUT_LIB_DIR}"
"S{CMAKE_INSTALL_PREFIX}/metis_S${metis_basicname}/1lib")
set (OUTPUT_INCLUDE_DIR "${OUTPUT_INCLUDE_DIR}"
"$S{CMAKE_INSTALL_PREFIX}/metis_S${metis_basicname}/include")

16

7 Building PARMETIS

The building of PARMETIS is also straight forward, the key point is to enable it to find an MPI library, and
we also define a couple of compiler “define” switches such as USE_GKREGEX to enable PARMETIS to use
the Gk version of regular expressions. We also configured the include_directories so that PARMETIS can find
METIS and GKLib header files.

17

Building PARMETIS

#patch the PARMETIS CMakeLists.txt
file (READ "${DOWNLOAD_DIR}/parmetis/${parmetis_basicname}/CMakeLists.txt"
parcmake)

#check whether we have patched this already

string (FIND "${parcmake}" "${patch_message}" patched)
if (patched EQUAL -1) #not patched yet
string (REPLACE "project (ParMETIS)" "project (ParMETIS)

#Use gk_regex.h instead of regex.h and a bunch of other flags for GKlib and
metis

add_definitions (-DUSE_GKREGEX -DWIN32 -DMSC -D_CRT_SECURE_NO_DEPRECATE)
add_definitions (-MTd) #static debug build

add_definitions (-27) #embed debugging info in library as opposed to using an
external .pdb database

find_package (MPI)
if (NOT MPI_FOUND)
message (FATAL_ERROR \"MPI is not found\")
endif ()
set (CMAKE_C_FLAGS \"\${CMAKE_C_FLAGS} \${MPI_COMPILE_FLAGS}\")
" parcmake "${parcmake}")
string (REGEX REPLACE "set[][(][1*GKLIB_PATH[")]1+[)][" \n]lx"
"set (GKLIB_PATH \"S${DOWNLOAD_DIR}/metis/${metis_basicname}/GKlib\" CACHE
PATH \"path to GKlib\")"
parcmake "S${parcmake}")
string (REGEX REPLACE "set[]*[(][1*METIS_PATH[")]+[)]1[\n]*"
"set (METIS_PATH \"${DOWNLOAD_DIR}/metis/S${metis_basicname}\" CACHE PATH
\"path to METIS\"

#make sure that METIS headers and generated GKLibs headers are found
include_directories (headers)
include_directories (\${CMAKE_INSTALL_PREFIX}/include)
include_directories (\${METIS_INSTALL_DIR}/include)
include_directories (\${METIS_BINARY_DIR}/include)

" #End of replacement string

parcmake "S${parcmake}")

string (REGEX REPLACE "link directories[1*[(][1*[$]{METIS_PATH}/1lib|
Jx[)]1["\n]*" "" parcmake "${parcmake}")
string (REGEX REPLACE
"link _directories[]*[(][]1*[$]{CMAKE_INSTALL_PREFIX}/lib[1*[)]["\n]x" ""

parcmake "${parcmake}")

file (WRITE "${DOWNLOAD_DIR}/parmetis/${parmetis_basicname}/CMakelLists.txt"
"S{patch_message}${parcmake}")
endif () #check whether patched

#Build ParMETIS as an external project
externalproject_add (ParMETIS_S{parmetis_basicname}

SOURCE_DIR ${DOWNLOAD_DIR}/parmetis/${parmetis_basicname}

CMAKE_GENERATOR ${CMAKE_GENERATOR }

BINARY_DIR ${CMAKE_BINARY DIR}/parmetis_S${parmetis_basicname}

INSTALL_DIR ${CMAKE_INSTALL_PREFIX}/parmetis_${parmetis_basicname}

CMAKE_ARGS
—-DCMAKE_INSTALL_PREFIX:PATH=${CMAKE_INSTALL_PREFIX}/parmetis_${parmetis_basicname}

—-DMETIS_INSTALL_DIR=${CMAKE_INSTALL_PREFIX}/metis_S${metis_basicname}

-DCMAKE_BUILD_TYPE:STRING=S${CMAKE_BUILD_TYPE}
-DCMAKE_C_COMPILER:FILEPATH=${CMAKE_C_COMPILER}

18

-DCMAKE_C_FLAGS : STRING=$ {CMAKE_C_FLAGS}
-DCMAKE_C_FLAGS_DEBUG:STRING=${CMAKE_C_FLAGS_DEBUG}
-DCMAKE_C_FLAGS_MINSIZEREL:STRING=${CMAKE_C_FLAGS_MINSIZEREL}
—-DCMAKE_C_FLAGS_RELEASE : STRING=S$ {CMAKE_C_FLAGS_RELEASE}
-DCMAKE_C_FLAGS_RELWITHDEBINFO:STRING=$ {CMAKE_C_FLAGS_RELWITHDEBINFO}
—DCMAKE_CXX_FLAGS :STRING=S$ {CMAKE_CXX_FLAGS}
—-DCMAKE_CXX_FLAGS_DEBUG:STRING=$ {CMAKE_CXX_FLAGS_DEBUG}
—-DCMAKE_CXX_FLAGS_MINSIZEREL:STRING=S$ {CMAKE_CXX_FLAGS_MINSIZEREL}
—-DCMAKE_CXX_FLAGS_RELEASE:STRING=S${CMAKE_CXX_FLAGS_RELEASE}
—DCMAKE_CXX_FLAGS_RELWITHDEBINFO:STRING=$ {CMAKE_CXX_FLAGS_RELWITHDEBINFO}
—DCMAKE_CXX_COMPILER:FILEPATH=${CMAKE_CXX_COMPILER}
—-DCMAKE_EXE_LINKER_FLAGS: STRING=S$ { CMAKE_EXE_LINKER_FLAGS}
DEPENDS METIS_S${metis_basicname}

)

set (OUTPUT_LIB_DIR "${OUTPUT_LIB_DIR}"

"S${CMAKE_INSTALL_PREFIX}/parmetis_${parmetis_basicname}/1lib")

set (OUTPUT_INCLUDE_DIR "${OUTPUT_INCLUDE_DIR}"

"${CMAKE_INSTALL_PREFIX}/parmetis_${parmetis_basicname}/include")

8 Building Boost with MPI support

Boost with MPI support is automatically built by ChasteThirdPartyLibBuilder, but the manual build and in-
stallation is mostly straightforward — only time consuming. Download and unzip Boost and go to the source
root to issue the following bootstrapping command:

$BOOST_SRC> \bootstrap
In order to build boost with MPI support, one needs to add the following declaration to the user configura-

tion file "$BOOST_SRC/tools/build/v2/user-config.jam (note the spaces, especially between mpi and ; in that
declaration)

using mpi ;

Then, to help boost locate the Microsoft HPC pack, in the file ?$BOOST_SRC/tools/build/v2/tools/mpi.jam”,
change

local cluster_pack_path_native = “C:\\Program Files\\Microsoft Compute Cluster Pack” ;

to the following

local cluster_pack_path_native = ”C:\\Program Files\\Microsoft HPC Pack 2012” ;

Furthermore, change the line

if [GLOB $(cluster_pack_path_native)\\Include : mpi.h |

to

if [GLOB $(cluster_pack_path_native)\\Inc : mpi.h |

and, finally, the line

options = <include>$(cluster_pack_path)/Include

to

19

options = <include> $(cluster_pack_path)/Inc

The mpi.jam file accepts both the Windows path separator \ (it was doubled because \ must be escaped in
strings) or the Posix separator /. The Windows one has been used here, but it need not be. Also, if you observe
the MS HPC pack directory structure, you will notice that the changes reflect the naming conventions used
in that directory. Alternatively, symbolic links may be created within the HPC Pack installation directory to
match the assumption that Boost is making. Specifically, the Inc directory should by sym-linked to the full
directory name Include.

To build the configured Boost libraries, from the source root issue the following command

$BOOST_SRC> b2 --build-type=complete msvc stage address-model=64 --build-dir=.. --without-python --stagedir=...

to build all combination of build types, namely {debug, release} x {multi-threaded, single-threaded} x {static
libs, shared libs} etc (made possible by the --build-type=complete option). Choose a build location with the --
build-dir option, and importantly, select the stage directory to coincide with the Boost library install directory.
Otherwise, some libraries which are built and left in the stage directory, which we will need, will not be
installed at the install location. Disable the building or installation of the python component with the switch
--without-python, according to the following note.

Note

The build succeeded for almost all the boost modules except the Python one, whose 32-bit build failed.
This was due to the fact that I had a 64-bit python 2.7.3 installed on my machine. I therefore installed a 32-bit
python, deleted the current Boost build, and successfully rebuilt all the Boost component.

Also note that the python.jam file checks the windows registry to locate where python is installed. So, the
registry needs to be pointing to the 32-bit version to get things to compile.

In the end, since we do not use Boost.Python component, I disabled it with the switch —without-python in
the automated build system.

Another late issue that I encountered while deploying the solutions to our test server was that Boost some-
how does not like build paths that are too deep, and will fail inexplicably with statements to the effect of
”cannot write XXX library”. The solution is to select a build path that is not too deep! I have adjusted
ChasteThirdPartyLibBuilder to use a shorter path, but beware that the build prefix is settable, and so you can
still run into this issue if you select a deep prefix! I later found out that this was probably an issue with MSVC
2010, which has a limitation of around 260 characters for path lengths. I did not encounter this with MSVC
2012, but then I understand that the path length limitation has been bumped up to 400, and possibly was the
reason I did not hit this issue during the build with the 2012 version.

Finally, install Boost with the following

$BOOST_SRC> b2 install —prefix=<path/to/installation/directory>

The part of ChasteThirdPartyLibBuilder that builds Boost is shown below

Building and Installing Boost

if (BUILD_BOOST)
#Build the Boosts
#Boost’s library naming convention
string (REGEX REPLACE ".x_([0-9])+" "\\1" X "${boost_basicname}")
if (X EQUAL 0)
string (REGEX REPLACE "boost_ (.*)_[0-9]+" "boost-\\1" SUFFIX
"S$S{boost_basicname}")
else ()
string (REGEX REPLACE "boost_ (.*)_([0-9]+)" "boost-\\1_\\2" SUFFIX
"S{boost_basicname}")
endif ()

20

set (OUTPUT_LIB_DIR "S${OUTPUT_LIB_DIR}"
"${CMAKE_INSTALL_PREFIX}/boost_S${boost_basicname}/lib")

set (OUTPUT_INCLUDE_DIR "${OUTPUT_INCLUDE_DIR}"
"${CMAKE_INSTALL_PREFIX}/boost_${boost_basicname}/include/${SUFFIX}")

#Check whether Boost has been previously configured.
find program (BJAM_${boost_basicname} bjam HINTS
"${DOWNLOAD_DIR} /boost/${boost_basicname}")
if (BJAM_S${boost_basicname} STREQUAL "BJAM_S{boost_basicname}-NOTFOUND")
#Configure Boost
message (STATUS "Configuring Boost: ${boost_basicname}")
set (C_COMMAND bootstrap.bat)
execute_process (
COMMAND ${C_COMMAND }
WORKING_DIRECTORY "${DOWNLOAD_DIR}/boost/${boost_basicname}"
OUTPUT_VARIABLE boost_log_out
ERROR_VARIABLE boost_log_err
RESULT_VARIABLE boost_result
)
message ("Outputs and result of command ${C_COMMAND}:\n
Standard error\n

$S{boost_log_err}
Standard output\n

${boost_log_out}\n
Result = ${boost_result}\n
=======End of Outputs for\n${C_COMMAND}\n

else ()
#unset (BJAM_${boost_basicname})
message (STATUS "Boost ${boost_basicname} is already configured. Reconfigure
manually, or delete ${DOWNLOAD_DIR}/boost/${boost_basicname} for automatic
configuration.")
endif ()

#Patch Boost to enable MPI
#Patch SBOOST_SRC/tools/build/v2/user-config. jam
file (READ
"S{DOWNLOAD_DIR} /boost/${boost_basicname}/tools/build/v2/user—-config. jam"
boost_userconf)
#check whether we have patched this already
string (FIND "${boost_userconf}" "${patch_message}" patched)
if (patched EQUAL -1) #not patched yet
message (STATUS "Patching Boost ${boost_basicname} to enable MPI")
file (WRITE
"$ {DOWNLOAD_DIR} /boost/${boost_basicname}/tools/build/v2/user-config. jam"
"${patch_message}\n\n# Enable MPI\n using mpi ;\n\n${boost_userconf}")
endif ()
#Help boost find MS MPI
file (READ
"S{DOWNLOAD_DIR} /boost/${boost_basicname}/tools/build/v2/tools/mpi.jam"
boost_mpi)
#check whether we have patched this already
string (FIND "${boost_mpi}" "${patch_message}" patched)
if (patched EQUAL -1) #not patched yet

string (REGEX REPLACE " (local[]=*cluster_pack_path_nativel[1x=[]1x)[";]1+;"
"\\1 \"${MS_HPC_PACK_DIR}\" ;"
boost_mpi "${boost_mpi}")

string (REGEX REPLACE " (if[1*[[]1[1*GLOB[I1*[$SI1[(]I
l*cluster_pack_path_nativel[1x[)1)["11+[11" "N\\I\\\\\\\\Inc : mpi.h]"
boost_mpi "${boost_mpi}")
string (REGEX REPLACE " (options[]*=[]*<include>[1x[$1[1x[(]I
]*cluster_pack_path[]1x[)])/Include" "\\1/Inc"

21

boost_mpi "${boost_mpi}")
file (WRITE
"S$ {DOWNLOAD_DIR} /boost/${boost_basicname}/tools/build/v2/tools/mpi.jam"
"$S{patch_message}${boost_mpi}")
endif ()

#Build Boost (Boost does not like too deep build paths)
message (STATUS "Building Boost: ${boost_basicname}. Note this can take very
long! Please be patient.")
set (C_COMMAND b2 --build-type=complete msvc stage address-model=64
--pbuild-dir=${CMAKE_BINARY_DIR} --without-python
—-stagedir=${CMAKE_INSTALL_PREFIX}/boost_${boost_basicname})
execute_process (
COMMAND ${C_COMMAND }
WORKING_DIRECTORY "${DOWNLOAD_DIR}/boost/${boost_basicname}"
OUTPUT_VARIABLE boost_log_out
ERROR_VARIABLE boost_log_err
RESULT_VARIABLE boost_result
)
message ("Outputs and result of command ${C_COMMAND}:\n
Standard error\n

${boost_log_err}
Standard output\n

${boost_log_out}\n
Result = ${boost_result}\n
=======End of Outputs for\n"${C_COMMAND}"\n

#Install Boost (if build succeeds)
if (NOT boost_result EQUAL 1)
message (STATUS "Installing Boost: ${boost_basicname} at
$S{CMAKE_INSTALL_PREFIX}/boost_S${boost_basicname}. This also takes very long.")
set (C_COMMAND b2 install
——prefix=${CMAKE_INSTALL_PREFIX}/boost_${boost_basicname})
execute_process (
COMMAND ${C_COMMAND }
WORKING_DIRECTORY "${DOWNLOAD_DIR}/boost/${boost_basicname}"
OUTPUT_VARIABLE boost_log_out
ERROR_VARIABLE boost_log_err
RESULT_VARIABLE boost_result
)
message ("Outputs and result of command ${C_COMMAND} :\n
Standard error\n

${boost_log_err}
Standard output\n

${boost_log_out}\n
Result = ${boost_result}\n
=======End of Outputs for\n${C_COMMAND }\n

endif (NOT boost_result EQUAL 1)

9 Building Chaste on Windows with CMake

The build system for the Windows port of Chaste has been implemented with CMake. To ease the tedium,
CMake build scripts have been written to automatically build and install both Chaste and its third-party library
dependencies. The ChasteThirdPartyLibBuilder is one of such script that is currently located in the folder
$CHASTE _SRC/cmake/third_party_libs as CMakeLists.txt. It has associated with it, in the same directory,
five auxiliary files, namely, ChasteThirdPartyLibs.cmake, c_flag_overrides.cmake, cxx_flag_overrides.cmake,
petscconf.h.in, and PETScConfig.cmake.in. The most interesting of these, from the user’s perspective, is
the ChasteThirdPartyLibs.cmake, which allows the configuration of the URLs to the third-party libraries that

22

chaste relies on, specifically, PETSc, HDF5, the Sundials family of libraries (CVODES etc.), and Boost. Since
PETSc contains links to compatible versions of PARMETIS, METIS, F2CBLAS, F2CLAPACK, the user does
not need to specify their URLs because they are automatically obtained from PETSc sources once it is down-
loaded and unzipped, and these are also downloaded and built by ChasteThirdPartyLibBuilder.

The other auxiliary files are used during the configuration of PETSc for Windows build, and the “overrides”
files are used to configure the MSVC compiler to allow consistent compiler switches across all the third-
party libraries and Chaste itself. For example, the /MTd specifies a statically-linked library with debugging
information. Mixing, for example, shared libraries and statically-linked ones usually results in linker errors.

The main CMake build script for Chaste itself is located at the root of the Chaste source tree, with each
component and their tests automatically built as separate projects. The Chaste source root contains the follow-
ing auxiliary files: ConfigureComponentTesting.cmake, c_flag_overrides.cmake, and cxx_flag_overrides.cmake.
The last two are exactly the same as those in the third-party library builder, and serve the same purpose. The
ConfigureComponentTesting.cmake however, allows the user to specify which component tests should be en-
abled. By default, all component tests are enabled. This could come in handy, when one is interested in testing
specific components as was the case while I was porting Chaste to Windows where I dealt with the source code
base on a component-by-component basis. It is conceivable that the developer may be interested in specific
components. However, all tests are enabled by default.

Another important configurable parameter is to set whether a tests from a given component should be run
in parallel with mpiexec. This parameter is specified in the CMakeLists.txt build script that resides in each fest
folder of each Chaste component. This is set with

set(TEST_MPIEXEC_ENABLED TRUE)

This is enabled for all tests by default, but may be switched off if necessary.
The relative locations of the important CMakeLists.txt build files are depicted in Figure 1.

Note

Chaste uses CxxTest as its testing framework, which in turn depends on a working
Python installation. Recall that we needed Cygwin to be installed with Python
enabled. However, be sure that the native Windows Python installation comes
\textit{before} Cygwin binaries on your path. This prevents the CMake build
scripts from trying to use the Python installed in Cygwin to generate tests,
which will not work.

9.1 Configuring and Building Chaste and its third-party dependencies from the com-
mand line

This section describes how to use the CMake files described earlier to configure, build, and install Chaste
from the Windows command prompt. You should preferably use the VS20(12|10) x64 Native Tools Command
prompt as it has most of the MSVC command-line tools set up on its path. Also ensure that CMake binaries
are on your path. Let us assume that you are working with the following directory structure’: some root folder
location where all the build and install artefacts will be placed. Let us call this location WinBuild. Under
WinBuild create a directory called build where the builds will take place, and another folder called install where
we shall install the libraries and header files of Chaste and its third-party dependencies once they are built, and
finally, a directory third_party_libs, where we shall place the CMake build file ChasteThirdPartyLibBuilder
and its auxiliary files. A folder build will be automatically created under third_party_libs that will contain the
build artefacts of the third-party libraries, and another folder called downloads will be created that will contain
the automatically downloaded, unzipped and patched third-party libraries. You may examine these folders to
see what has been done to the downloaded source trees. The Chaste source tree could be anywhere: its path
will be provided to the build system.

The first step is to copy all the ordinary files in the $SCHASTE_SRC/cmake directory to the folder WinBuild
that we just created. Also, we need to copy all the ordinary files in the $CHASTE_SRC/cmake/third_party_libs
to the directory WinBuild/third_party_libs that we just created also to contain the third-party library builds.

2Obviously, this directory structure is for discussion only and the values are settable to whatever suits the developer.

23

$CHASTE_SRC

This is the chaste source root
on the Subversion server. The
CMakeLists.txt in this folder

builds Chaste itself. It can be
used independently of the other u
CMake files to build Chaste, pro-

vided the paths to the third-party
libraries are set correctly.

Y
g cmake ~

This folder, directly under the Chaste source root on the
SVN, contains the CMake build scripts that can build
both Chaste and its third-party library dependencies as
external projects. The CMakeLists.txt in the root of
this folder is a ’superbuilder” file that can build “every- u
thing” related to Chaste. I suspect it will be used ini-
tially, and less often afterwards to set up a Chaste build
environment. Then attetion will turn to the CMake-
Lists.txt in the Chaste source root, which will be used
more often to build Chaste during development.

third_party_libs Y

This folder, directly under the cmake directory above
contains the CMake build scripts that we have named
ChasteThirdPartyLibBuilder above. It builds Chaste’s
third-party library dependencies as external projects.
It can be used standalone to build just the third-
party libraries. To build a different version of the li-
braries, you need to modify accordingly the file named
ChasteThirdPartyLibs.cmake, which is in this folder.

\

Figure 1: Relative folder structure of the CMake build files on the Chaste subversion server from the root of
the Chaste source tree.

The next step is then to configure the project from the command line? to get us ready for the build. Assum-
ing that WinBuild is located at the root of the ”D:” drive, as in my case, change directory to D./WinBuild/build
and issue the following single-line command.

3This step can also be carried out with the CMake GUIL

24

cmake -G Visual Studio 11 Win64” -DCHASTE_SOURCE_DIR:PATH="path-to-your-chaste-source-tree”

-DTHIRD _PARTY SOURCE_DIR:PATH="D:/WinBuild/third_party_libs”
-DCMAKE_INSTALL_PREFIX:PATH="D:/WinBuild/install” ../

The last parameter ”../” simply says that the main CMakeLists.txt that builds the whole software lies in the
immediate parent of the current directory. Recall that we are issuing this command from the build directory,
which is immediately below WinBuild. This command will generate various Cache files, ready to begin the
build.

The next step is to build the whole project by issuing the following command from the same directory as
we just issued the previous one (WinBuild/build):

cmake —build .

Now is the time to take some break as the build process can take a while. Alternatively, the series of
output generated by the build system can be entertaining! If all goes well, at the end of the build, the third-
party libraries and chaste, as well as their header files, should be installed in the WinBuild/install folder that
we specified earlier. There should be one directory called chaste that contains the Chaste libraries (under
lib subfolder) and header files (under include subfolder). Another directory under WinBuild/install called
third_party_libs contains, arranged in folders named after the library and its version, the libraries (under /ib
subfolder) and header files (under include subfolder).

9.2 Running Chaste Tests

The Chaste tests can be run through ctest, CMake’s testing infrastructure. To run the tests after building Chaste,
change to the directory WinBuild/build/chaste, which was automatically created during Chaste build and issue
the following command to run all tests and dump the results to screen:

ctest -C Debug --output-on-failure

Since Chaste was a ”’Debug” build, it is necessary to specify the Debug configuration with the option -C Debug.
The switch --output-on-failure prints a slightly verbose output when a test fails.

To run a specific test by name you can specify its name with the option -R. For example, to run the test
named TestCwdRunner, issue the following command

ctest -C Debug --output-on-failure -R TestCwdRunner

Actually, the -R switch accepts a regular expression and will partially match names, so that if we want to
run all tests with a C in their name, which includes the TestCwdRunner test, then the following command will
do just that

ctest -C Debug --output-on-failure -R C

Finally, a useful command-line option to cfest is the -O option that specifies a file to write the test output
to a file (in addition to the console). For example, the following command runs the previous set of tests and
also writes the result to a file called TestResults.txt under the mytest folder, which is created if necessary.

ctest -C Debug --output-on-failure -R C -O mytests/TestResults.txt

Using this command, we can now run families of tests in one go with one command. The command to
execute is the following from the build directory of Chaste (i.e. WinBuild/build/chaste):

cmake -DRUN_TESTS:BOOL=ON -DTEST_FAMILY:STRING="Continuous” <path-to-your-chaste-source>

25

0NN AW~

This runs all ”Continuous” tests in the Chaste source tree. Other families of tests can be run by replacing

93 99

”Continuous” with "Nightly”, ”Parallel”, ”Failing”, "Production” and so on.

The bit of code that makes this possible is the following part of the CMakeLists.txt at the root of the Chaste
source folder. The cmake option RUN_TESTS, that we define to be OFF by default controls whether tests
should be run. The variable TEST_FAMILY specifies which family of tests to run, this is set to "Continuous”
by default. The code between lines 6 and 26 simply searches the chaste source tree for all TestPacks and
groups them by the families indicated. It then creates a set of files that contain the names of the tests that
belong to each of the families, sorted in alphabetical order, in files named after the test family and stored under
the folder fest_runner. Depending on the user’s argument when running tests, one of these files will be selected
and the tests named therein run. The results of the tests are stored in a file named according to the following
scheme <test_family>TestOutputs_<date>_<time>>_.txt in the folder WinBuild/build/chaste.

Running test families in one go (part of SCHASTE_SRC/CMakeLists.txt)

option (RUN_TESTS OFF "This option simply runs Chaste tests. You should also set
the test family.")

set (TEST_FAMILY "Continuous" CACHE STRING "The name of the test family, e.g,
Continuous, Failing, Nightly, Parallel etc.")

if (RUN_TESTS)
set (TestPackTypes
"Continuous;Failing;Nightly;Parallel;Production;ProfileAssembly;Profile")
foreach (type ${TestPackTypes})
set (result "")
file (GLOB_RECURSE TEST_PACKS "${CMAKE_CURRENT_SOURCE_DIR}" ${type}TestPack.txt)
foreach (testp ${TEST_PACKS})
file (STRINGS "S${testp}" testpack)
foreach (s ${testpack})
string (REGEX REPLACE " (.*/) ([a-zA-Z0-9_]+) [.1hpp" "\\2" s2 "${s}")
string (REGEX MATCH ".x[.]py" match "${s2}")
if (NOT match)
set (result "S${result}" "${s2}")
endif (NOT match)
endforeach (s ${testpack})
endforeach (testp ${TEST_PACKS})
list (REMOVE_AT result 0) #remove the first empty string.
list (SORT result)
string (REPLACE ";" "\n" result "${result}")
file (WRITE "test_runner/${type}TestsToRun.txt" "${result}")
endforeach (type ${TestPackTypes})

list (FIND TestPackTypes ${TEST_FAMILY} found)
if (found EQUAL -1)

message (FATAL_ERROR "Test family ${TEST_FAMILY} does not exist. Must be one of
${TestPackTypes}. Aborting.")

else ()
file (STRINGS "test_runner/${TEST_FAMILY}TestsToRun.txt" tests)
string (REPLACE ";" ""|;" tests "S$S{tests}")

#get date and time, to append to test result filename
execute_process (COMMAND cmd /c echo $DATES$ $TIMES
WORKING_DIRECTORY ${CMAKE_BINARY_DIR}
OUTPUT_VARIABLE date_time
)
string (REGEX REPLACE "[:/. \n]" "_" date_time "${date_time}")
execute_process (COMMAND ctest —-C Debug --output-on-failure -0
${TEST_FAMILY}TestOutputs_S${date_time}.txt -R ${tests}
WORKING_DIRECTORY ${CMAKE_BINARY_DIR}
OUTPUT_VARIABLE t_out
RESULT_VARIABLE t_res
ERROR_VARIABLE t_err
)

message ("STDOUT \n${t_out}")
message ("STDERR \n${t_err}")
endif ()

else (RUN_TESTS)

26

Note

In order to minimise hidden dependencies of the native Windows port of Chaste on my particular work-
ing environment, I developed entirely on a single machine, and when done deployed the result to a ”virgin”
machine, which would be our production test server (actually running Visual Studio 2010, compared to my
development machine which had Visual Studio 2012). The deployment to an entirely new machine was almost
perfect without any hitch except for the two minor issues, which I note here.

1. Administrative privileges are needed if you want to automate the installation of Cygwin by ChasteThird-
PartyLibBuilder. This seems obvious, but also one must reduce the level of notification under Windows
7 User Account Control. Specifically, the installation on the production server came back with an error
message requiring administrative privileges. Although, the account used had those privileges, I have to
reduce the Choose when to be notified about changes to your computer slider to Never to get the instal-
lation to complete. You can however bring the slider up afterwards, as Microsoft does not recommend
this setting.

2. The other issue I encountered was with the symbolic link. Creating it from Windows Explorer as a New
Shortcut did not work. I had to enter the mklink command shown in Section 2 at the command prompt
to get PETSc to be able to work with it.

3. When running tests from the Windows command prompt, popup windows requiring action may appear
if the test aborts for whatever reason. This defeats the purpose of automated tests. A workaround is to
log in over ssh to Cygwin, which doesn’t seem to suffer from this issue.

10 Conclusion

This document described the key steps in porting Chaste from Linux to Windows, with emphasis on what was
done to get everything to build correctly. The changes to the Chaste source code that enabled it to build on
Windows was carried out on a separate subversion branch, and are not described here. However, the changes
will hopefully be merged into the main Chaste trunk in due course. I think Chaste is an excellent piece of
software and certainly an important piece of scientific work. I am proud to have been able to work on its port
to Windows. In the process I have personally learnt quite a bit!

27

