Chaste Release::3.1
AbstractCorrectionTermAssembler.cpp
00001 /*
00002 
00003 Copyright (c) 2005-2012, University of Oxford.
00004 All rights reserved.
00005 
00006 University of Oxford means the Chancellor, Masters and Scholars of the
00007 University of Oxford, having an administrative office at Wellington
00008 Square, Oxford OX1 2JD, UK.
00009 
00010 This file is part of Chaste.
00011 
00012 Redistribution and use in source and binary forms, with or without
00013 modification, are permitted provided that the following conditions are met:
00014  * Redistributions of source code must retain the above copyright notice,
00015    this list of conditions and the following disclaimer.
00016  * Redistributions in binary form must reproduce the above copyright notice,
00017    this list of conditions and the following disclaimer in the documentation
00018    and/or other materials provided with the distribution.
00019  * Neither the name of the University of Oxford nor the names of its
00020    contributors may be used to endorse or promote products derived from this
00021    software without specific prior written permission.
00022 
00023 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00024 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00025 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00026 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
00027 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00028 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
00029 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
00030 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00031 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
00032 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00033 
00034 */
00035 
00036 #include "AbstractCorrectionTermAssembler.hpp"
00037 #include <typeinfo>
00038 
00039 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM, unsigned PROBLEM_DIM>
00040 AbstractCorrectionTermAssembler<ELEMENT_DIM,SPACE_DIM,PROBLEM_DIM>::AbstractCorrectionTermAssembler(
00041         AbstractTetrahedralMesh<ELEMENT_DIM,SPACE_DIM>* pMesh,
00042         AbstractCardiacTissue<ELEMENT_DIM,SPACE_DIM>* pTissue,
00043         unsigned numQuadPoints)
00044     : AbstractCardiacFeVolumeIntegralAssembler<ELEMENT_DIM,SPACE_DIM,PROBLEM_DIM,true,false,CARDIAC>(pMesh,pTissue,numQuadPoints)
00045 {
00046     // Work out which elements have the same cell at every node, and hence can have SVI done
00047     mElementsHasIdenticalCellModels.resize(pMesh->GetNumElements(), true);
00048     for (typename AbstractTetrahedralMesh<ELEMENT_DIM, SPACE_DIM>::ElementIterator iter = pMesh->GetElementIteratorBegin();
00049          iter != pMesh->GetElementIteratorEnd();
00050          ++iter)
00051     {
00052         Element<ELEMENT_DIM, SPACE_DIM>& r_element = *iter;
00053         if (r_element.GetOwnership())
00054         {
00055             unsigned node_zero = r_element.GetNodeGlobalIndex(0);
00056             AbstractCardiacCellInterface* p_cell_zero = this->mpCardiacTissue->GetCardiacCellOrHaloCell(node_zero);
00057             const std::type_info& r_zero_info = typeid(*p_cell_zero);
00058             // Check the other nodes match
00059             for (unsigned local_index=1; local_index<r_element.GetNumNodes(); local_index++)
00060             {
00061                 unsigned global_index = r_element.GetNodeGlobalIndex(local_index);
00062                 AbstractCardiacCellInterface* p_cell = this->mpCardiacTissue->GetCardiacCellOrHaloCell(global_index);
00063                 const std::type_info& r_info = typeid(*p_cell);
00064                 if (r_zero_info != r_info)
00065                 {
00066                     mElementsHasIdenticalCellModels[r_element.GetIndex()] = false;
00067                     break;
00068                 }
00069             }
00070         }
00071     }
00072     // Note: the mStateVariables std::vector is resized if correction will be applied to a given element
00073 }
00074 
00075 
00076 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM, unsigned PROBLEM_DIM>
00077 void AbstractCorrectionTermAssembler<ELEMENT_DIM,SPACE_DIM,PROBLEM_DIM>::ResetInterpolatedQuantities()
00078 {
00079     // reset ionic current, and state variables
00080     mIionicInterp = 0;
00081     for(unsigned i=0; i<mStateVariablesAtQuadPoint.size(); i++)
00082     {
00083         mStateVariablesAtQuadPoint[i] = 0;
00084     }
00085 }
00086 
00087 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM, unsigned PROBLEM_DIM>
00088 void AbstractCorrectionTermAssembler<ELEMENT_DIM,SPACE_DIM,PROBLEM_DIM>::IncrementInterpolatedQuantities(
00089             double phiI, const Node<SPACE_DIM>* pNode)
00090 {
00091     // interpolate ionic current
00092     unsigned node_global_index = pNode->GetIndex();
00093     mIionicInterp  += phiI * this->mpCardiacTissue->rGetIionicCacheReplicated()[ node_global_index ];
00094     // and state variables
00095     std::vector<double> state_vars = this->mpCardiacTissue->GetCardiacCellOrHaloCell(node_global_index)->GetStdVecStateVariables();
00096     for (unsigned i=0; i<mStateVariablesAtQuadPoint.size(); i++)
00097     {
00098         mStateVariablesAtQuadPoint[i] += phiI * state_vars[i];
00099     }
00100 }
00101 
00102 
00103 
00104 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM, unsigned PROBLEM_DIM>
00105 bool AbstractCorrectionTermAssembler<ELEMENT_DIM,SPACE_DIM,PROBLEM_DIM>::ElementAssemblyCriterion(Element<ELEMENT_DIM,SPACE_DIM>& rElement)
00106 {
00107     // if element doesn't have identical cell models, can't do SVI.
00108     if (!mElementsHasIdenticalCellModels[rElement.GetIndex()])
00109     {
00110         return false;
00111     }
00112     double DELTA_IIONIC = 1; // tolerance
00113 
00114     //The criterion and the correction both need the ionic cache, so we better make sure that it's up-to-date
00115     assert(this->mpCardiacTissue->GetDoCacheReplication());
00116     ReplicatableVector& r_cache = this->mpCardiacTissue->rGetIionicCacheReplicated();
00117 
00118     double diionic = fabs(r_cache[rElement.GetNodeGlobalIndex(0)] - r_cache[rElement.GetNodeGlobalIndex(1)]);
00119 
00120     if (ELEMENT_DIM > 1)
00121     {
00122         diionic = std::max(diionic, fabs(r_cache[rElement.GetNodeGlobalIndex(0)] - r_cache[rElement.GetNodeGlobalIndex(2)]) );
00123         diionic = std::max(diionic, fabs(r_cache[rElement.GetNodeGlobalIndex(1)] - r_cache[rElement.GetNodeGlobalIndex(2)]) );
00124     }
00125 
00126     if (ELEMENT_DIM > 2)
00127     {
00128         diionic = std::max(diionic, fabs(r_cache[rElement.GetNodeGlobalIndex(0)] - r_cache[rElement.GetNodeGlobalIndex(3)]) );
00129         diionic = std::max(diionic, fabs(r_cache[rElement.GetNodeGlobalIndex(1)] - r_cache[rElement.GetNodeGlobalIndex(3)]) );
00130         diionic = std::max(diionic, fabs(r_cache[rElement.GetNodeGlobalIndex(2)] - r_cache[rElement.GetNodeGlobalIndex(3)]) );
00131     }
00132 
00133     bool will_assemble = (diionic > DELTA_IIONIC);
00134 
00135     if (will_assemble)
00136     {
00137         unsigned any_node = rElement.GetNodeGlobalIndex(0);
00138         mStateVariablesAtQuadPoint.resize(this->mpCardiacTissue->GetCardiacCellOrHaloCell(any_node)->GetNumberOfStateVariables() );
00139     }
00140 
00141     return will_assemble;
00142 }
00143 
00145 // explicit instantiation
00147 
00148 template class AbstractCorrectionTermAssembler<1,1,1>;
00149 template class AbstractCorrectionTermAssembler<1,2,1>;
00150 template class AbstractCorrectionTermAssembler<1,3,1>;
00151 template class AbstractCorrectionTermAssembler<2,2,1>;
00152 template class AbstractCorrectionTermAssembler<3,3,1>;
00153 template class AbstractCorrectionTermAssembler<1,1,2>;
00154 template class AbstractCorrectionTermAssembler<2,2,2>;
00155 template class AbstractCorrectionTermAssembler<3,3,2>;