NagaiHondaForce.cpp

00001 /*
00002 
00003 Copyright (C) University of Oxford, 2005-2010
00004 
00005 University of Oxford means the Chancellor, Masters and Scholars of the
00006 University of Oxford, having an administrative office at Wellington
00007 Square, Oxford OX1 2JD, UK.
00008 
00009 This file is part of Chaste.
00010 
00011 Chaste is free software: you can redistribute it and/or modify it
00012 under the terms of the GNU Lesser General Public License as published
00013 by the Free Software Foundation, either version 2.1 of the License, or
00014 (at your option) any later version.
00015 
00016 Chaste is distributed in the hope that it will be useful, but WITHOUT
00017 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
00018 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
00019 License for more details. The offer of Chaste under the terms of the
00020 License is subject to the License being interpreted in accordance with
00021 English Law and subject to any action against the University of Oxford
00022 being under the jurisdiction of the English Courts.
00023 
00024 You should have received a copy of the GNU Lesser General Public License
00025 along with Chaste. If not, see <http://www.gnu.org/licenses/>.
00026 
00027 */
00028 #include "NagaiHondaForce.hpp"
00029 
00030 template<unsigned DIM>
00031 NagaiHondaForce<DIM>::NagaiHondaForce()
00032    : AbstractForce<DIM>(),
00033      mNagaiHondaDeformationEnergyParameter(100.0), // This is 1.0 in the Nagai & Honda paper
00034      mNagaiHondaMembraneSurfaceEnergyParameter(10.0), // This is 0.1 the Nagai & Honda paper
00035      mNagaiHondaCellCellAdhesionEnergyParameter(1.0), // This is 0.01 the Nagai & Honda paper
00036      mNagaiHondaCellBoundaryAdhesionEnergyParameter(1.0), // This is 0.01 the Nagai & Honda paper
00037      mMatureCellTargetArea(1.0)
00038 {
00039 }
00040 
00041 template<unsigned DIM>
00042 NagaiHondaForce<DIM>::~NagaiHondaForce()
00043 {
00044 }
00045 
00046 template<unsigned DIM>
00047 void NagaiHondaForce<DIM>::AddForceContribution(std::vector<c_vector<double, DIM> >& rForces,
00048                                                 AbstractCellPopulation<DIM>& rCellPopulation)
00049 {
00050     // Helper variable that is a static cast of the cell population
00051     VertexBasedCellPopulation<DIM>* p_cell_population = static_cast<VertexBasedCellPopulation<DIM>*>(&rCellPopulation);
00052 
00053     // Iterate over vertices in the cell population
00054     for (unsigned node_index=0; node_index<p_cell_population->GetNumNodes(); node_index++)
00055     {
00056         // Compute the force on this node
00057 
00058         /*
00059          * The force on this Node is given by the gradient of the total free
00060          * energy of the CellPopulation, evaluated at the position of the vertex. This
00061          * free energy is the sum of the free energies of all CellPtrs in
00062          * the cell population. The free energy of each CellPtr is comprised of three
00063          * parts - a cell deformation energy, a membrane surface tension energy
00064          * and an adhesion energy.
00065          *
00066          * Note that since the movement of this Node only affects the free energy
00067          * of the three CellPtrs containing it, we can just consider the
00068          * contributions to the free energy gradient from each of these three
00069          * CellPtrs.
00070          */
00071 
00072         c_vector<double, DIM> deformation_contribution = zero_vector<double>(DIM);
00073         c_vector<double, DIM> membrane_surface_tension_contribution = zero_vector<double>(DIM);
00074         c_vector<double, DIM> adhesion_contribution = zero_vector<double>(DIM);
00075 
00076         // Find the indices of the elements owned by this node
00077         std::set<unsigned> containing_elem_indices = p_cell_population->GetNode(node_index)->rGetContainingElementIndices();
00078 
00079         // Iterate over these elements
00080         for (std::set<unsigned>::iterator iter = containing_elem_indices.begin();
00081              iter != containing_elem_indices.end();
00082              ++iter)
00083         {
00084             // Get this element and its index
00085             VertexElement<DIM, DIM>* p_element = p_cell_population->GetElement(*iter);
00086             unsigned element_index = p_element->GetIndex();
00087 
00088             // Find the local index of this node in this element
00089             unsigned local_index = p_element->GetNodeLocalIndex(node_index);
00090 
00091             /******** Start of deformation force calculation ********/
00092 
00093             // Compute the area of this element and its gradient at this node
00094             double element_area = p_cell_population->rGetMesh().GetVolumeOfElement(*iter);
00095             c_vector<double, DIM> element_area_gradient = p_cell_population->rGetMesh().GetAreaGradientOfElementAtNode(p_element, local_index);
00096 
00097             // Get the target area of the cell
00098             double cell_target_area = GetTargetAreaOfCell(p_cell_population->GetCellUsingLocationIndex(element_index));
00099 
00100             // Add the force contribution from this cell's deformation energy (note the minus sign)
00101             deformation_contribution -= 2*GetNagaiHondaDeformationEnergyParameter()*(element_area - cell_target_area)*element_area_gradient;
00102 
00103             /******** End of deformation force calculation *************/
00104 
00105             /******** Start of membrane force calculation ***********/
00106 
00107             // Compute the perimeter of the element and its gradient at this node
00108             double element_perimeter = p_cell_population->rGetMesh().GetSurfaceAreaOfElement(*iter);
00109             c_vector<double, DIM> element_perimeter_gradient = p_cell_population->rGetMesh().GetPerimeterGradientOfElementAtNode(p_element, local_index);
00110 
00111             // Get the target perimeter of the cell
00112             double cell_target_perimeter = 2*sqrt(M_PI*cell_target_area);
00113 
00114             // Add the force contribution from this cell's membrane surface tension (note the minus sign)
00115             membrane_surface_tension_contribution -= 2*GetNagaiHondaMembraneSurfaceEnergyParameter()*(element_perimeter - cell_target_perimeter)*element_perimeter_gradient;
00116 
00117             /******** End of membrane force calculation **********/
00118 
00119             /******** Start of adhesion force calculation ***********/
00120 
00121             // Get the current, previous and next nodes in this element
00122             Node<DIM>* p_current_node = p_element->GetNode(local_index);
00123 
00124             unsigned previous_node_local_index = (p_element->GetNumNodes()+local_index-1)%(p_element->GetNumNodes());
00125             Node<DIM>* p_previous_node = p_element->GetNode(previous_node_local_index);
00126 
00127             unsigned next_node_local_index = (local_index+1)%(p_element->GetNumNodes());
00128             Node<DIM>* p_next_node = p_element->GetNode(next_node_local_index);
00129 
00130             // Compute the adhesion parameter for each of these edges
00131             double previous_edge_adhesion_parameter;
00132             double next_edge_adhesion_parameter;
00133 
00134             previous_edge_adhesion_parameter = GetAdhesionParameter(p_previous_node, p_current_node);
00135             next_edge_adhesion_parameter = GetAdhesionParameter(p_current_node, p_next_node);
00136 
00137             // Compute the gradient of the edge of the cell ending in this node
00138             c_vector<double, DIM> previous_edge_gradient = p_cell_population->rGetMesh().GetPreviousEdgeGradientOfElementAtNode(p_element, local_index);
00139 
00140             // Compute the gradient of the edge of the cell starting in this node
00141             c_vector<double, DIM> next_edge_gradient = p_cell_population->rGetMesh().GetNextEdgeGradientOfElementAtNode(p_element, local_index);
00142 
00143             // Add the force contribution from cell-cell and cell-boundary adhesion (note the minus sign)
00144             adhesion_contribution -= previous_edge_adhesion_parameter*previous_edge_gradient + next_edge_adhesion_parameter*next_edge_gradient;
00145 
00146             /******** End of adhesion force calculation *************/
00147         }
00148 
00149         c_vector<double, DIM> force_on_node = deformation_contribution +
00150                                               membrane_surface_tension_contribution +
00151                                               adhesion_contribution;
00152 
00153         rForces[node_index] += force_on_node;
00154     }
00155 }
00156 
00157 template<unsigned DIM>
00158 double NagaiHondaForce<DIM>::GetAdhesionParameter(Node<DIM>* pNodeA, Node<DIM>* pNodeB)
00159 {
00160     // Find the indices of the elements owned by each node
00161     std::set<unsigned> elements_containing_nodeA = pNodeA->rGetContainingElementIndices();
00162     std::set<unsigned> elements_containing_nodeB = pNodeB->rGetContainingElementIndices();
00163 
00164     // Find common elements
00165     std::set<unsigned> shared_elements;
00166     std::set_intersection(elements_containing_nodeA.begin(),
00167                           elements_containing_nodeA.end(),
00168                           elements_containing_nodeB.begin(),
00169                           elements_containing_nodeB.end(),
00170                           std::inserter(shared_elements, shared_elements.begin()));
00171 
00172     // Check that the nodes have a common edge
00173     assert(!shared_elements.empty());
00174 
00175     double adhesion_parameter = GetNagaiHondaCellCellAdhesionEnergyParameter();
00176 
00177     // If the edge corresponds to a single element, then the cell is on the boundary
00178     if (shared_elements.size() == 1)
00179     {
00180         adhesion_parameter = GetNagaiHondaCellBoundaryAdhesionEnergyParameter();
00181     }
00182 
00183     return adhesion_parameter;
00184 }
00185 
00186 template<unsigned DIM>
00187 double NagaiHondaForce<DIM>::GetNagaiHondaDeformationEnergyParameter()
00188 {
00189     return mNagaiHondaDeformationEnergyParameter;
00190 }
00191 
00192 template<unsigned DIM>
00193 double NagaiHondaForce<DIM>::GetNagaiHondaMembraneSurfaceEnergyParameter()
00194 {
00195     return mNagaiHondaMembraneSurfaceEnergyParameter;
00196 }
00197 
00198 template<unsigned DIM>
00199 double NagaiHondaForce<DIM>::GetNagaiHondaCellCellAdhesionEnergyParameter()
00200 {
00201     return mNagaiHondaCellCellAdhesionEnergyParameter;
00202 }
00203 
00204 template<unsigned DIM>
00205 double NagaiHondaForce<DIM>::GetNagaiHondaCellBoundaryAdhesionEnergyParameter()
00206 {
00207     return mNagaiHondaCellBoundaryAdhesionEnergyParameter;
00208 }
00209 
00210 template<unsigned DIM>
00211 void NagaiHondaForce<DIM>::SetNagaiHondaDeformationEnergyParameter(double deformationEnergyParameter)
00212 {
00213     mNagaiHondaDeformationEnergyParameter = deformationEnergyParameter;
00214 }
00215 
00216 template<unsigned DIM>
00217 void NagaiHondaForce<DIM>::SetNagaiHondaMembraneSurfaceEnergyParameter(double membraneSurfaceEnergyParameter)
00218 {
00219     mNagaiHondaMembraneSurfaceEnergyParameter = membraneSurfaceEnergyParameter;
00220 }
00221 
00222 template<unsigned DIM>
00223 void NagaiHondaForce<DIM>::SetNagaiHondaCellCellAdhesionEnergyParameter(double cellCellAdhesionEnergyParameter)
00224 {
00225     mNagaiHondaCellCellAdhesionEnergyParameter = cellCellAdhesionEnergyParameter;
00226 }
00227 
00228 template<unsigned DIM>
00229 void NagaiHondaForce<DIM>::SetNagaiHondaCellBoundaryAdhesionEnergyParameter(double cellBoundaryAdhesionEnergyParameter)
00230 {
00231     mNagaiHondaCellBoundaryAdhesionEnergyParameter = cellBoundaryAdhesionEnergyParameter;
00232 }
00233 
00234 template<unsigned DIM>
00235 double NagaiHondaForce<DIM>::GetTargetAreaOfCell(const CellPtr pCell) const
00236 {
00237     // Get target area A of a healthy cell in S, G2 or M phase
00238     double cell_target_area = mMatureCellTargetArea;
00239 
00240     double cell_age = pCell->GetAge();
00241     double g1_duration = pCell->GetCellCycleModel()->GetG1Duration();
00242 
00243     // If the cell is differentiated then its G1 duration is infinite
00244     if (g1_duration == DBL_MAX) // don't use magic number, compare to DBL_MAX
00245     {
00246         // This is just for fixed cell cycle models, need to work out how to find the g1 duration
00247         g1_duration = pCell->GetCellCycleModel()->GetTransitCellG1Duration();
00248     }
00249 
00250     if (pCell->HasCellProperty<ApoptoticCellProperty>())
00251     {
00252         // Age of cell when apoptosis begins
00253         if (pCell->GetStartOfApoptosisTime() - pCell->GetBirthTime() < g1_duration)
00254         {
00255             cell_target_area *= 0.5*(1 + (pCell->GetStartOfApoptosisTime() - pCell->GetBirthTime())/g1_duration);
00256         }
00257 
00258         // The target area of an apoptotic cell decreases linearly to zero (and past it negative)
00259         cell_target_area = cell_target_area - 0.5*cell_target_area/(pCell->GetApoptosisTime())*(SimulationTime::Instance()->GetTime()-pCell->GetStartOfApoptosisTime());
00260 
00261         // Don't allow a negative target area
00262         if (cell_target_area < 0)
00263         {
00264             cell_target_area = 0;
00265         }
00266     }
00267     else
00268     {
00269         // The target area of a proliferating cell increases linearly from A/2 to A over the course of the G1 phase
00270         if (cell_age < g1_duration)
00271         {
00272             cell_target_area *= 0.5*(1 + cell_age/g1_duration);
00273         }
00274     }
00275 
00276     return cell_target_area;
00277 }
00278 
00279 template<unsigned DIM>
00280 double NagaiHondaForce<DIM>::GetMatureCellTargetArea() const
00281 {
00282     return mMatureCellTargetArea;
00283 }
00284 
00285 template<unsigned DIM>
00286 void NagaiHondaForce<DIM>::SetMatureCellTargetArea(double matureCellTargetArea)
00287 {
00288     assert(matureCellTargetArea >= 0.0);
00289     mMatureCellTargetArea = matureCellTargetArea;
00290 }
00291 
00292 template<unsigned DIM>
00293 void NagaiHondaForce<DIM>::OutputForceParameters(out_stream& rParamsFile)
00294 {
00295     *rParamsFile <<  "\t\t\t<NagaiHondaDeformationEnergyParameter>"<<  mNagaiHondaDeformationEnergyParameter << "</NagaiHondaDeformationEnergyParameter> \n" ;
00296     *rParamsFile <<  "\t\t\t<NagaiHondaMembraneSurfaceEnergyParameter>"<<  mNagaiHondaMembraneSurfaceEnergyParameter << "</NagaiHondaMembraneSurfaceEnergyParameter> \n" ;
00297     *rParamsFile <<  "\t\t\t<NagaiHondaCellCellAdhesionEnergyParameter>"<<  mNagaiHondaCellCellAdhesionEnergyParameter << "</NagaiHondaCellCellAdhesionEnergyParameter> \n" ;
00298     *rParamsFile <<  "\t\t\t<NagaiHondaCellBoundaryAdhesionEnergyParameter>"<<  mNagaiHondaCellBoundaryAdhesionEnergyParameter << "</NagaiHondaCellBoundaryAdhesionEnergyParameter> \n" ;
00299     *rParamsFile <<  "\t\t\t<MatureCellTargetArea>"<<  mMatureCellTargetArea << "</MatureCellTargetArea> \n" ;
00300 
00301     // Call direct parent class
00302     AbstractForce<DIM>::OutputForceParameters(rParamsFile);
00303 }
00304 
00305 
00307 // Explicit instantiation
00309 
00310 template class NagaiHondaForce<1>;
00311 template class NagaiHondaForce<2>;
00312 template class NagaiHondaForce<3>;
00313 
00314 
00315 // Serialization for Boost >= 1.36
00316 #include "SerializationExportWrapperForCpp.hpp"
00317 EXPORT_TEMPLATE_CLASS_SAME_DIMS(NagaiHondaForce)

Generated on Mon Nov 1 12:35:16 2010 for Chaste by  doxygen 1.5.5